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en-de en-fr en-es en-it en-pt de-fr de-es de-it de-pt fr-es fr-it fr-pt es-it es-pt it-pt

Supervised methods with cross-lingual supervision
Sup-BWE-Direct 73.5 81.1 81.4 77.3 79.9 73.3 67.7 69.5 59.1 82.6 83.2 78.1 83.5 87.3 81.0

Unsupervised methods without cross-lingual supervision
BWE-Pivot 74.0 82.3 81.7 77.0 80.7 71.9 66.1 68.0 57.4 81.1 79.7 74.7 81.9 85.0 78.9
BWE-Direct 74.0 82.3 81.7 77.0 80.7 73.0 65.7 66.5 58.5 83.1 83.0 77.9 83.3 87.3 80.5

MAT+MPSR 74.8 82.4 82.5 78.8 81.5 76.7 69.6 72.0 63.2 83.9 83.5 79.3 84.5 87.8 82.3

de-en fr-en es-en it-en pt-en fr-de es-de it-de pt-de es-fr it-fr pt-fr it-es pt-es pt-it

Supervised methods with cross-lingual supervision
Sup-BWE-Direct 72.4 82.4 82.9 76.9 80.3 69.5 68.3 67.5 63.7 85.8 87.1 84.3 87.3 91.5 81.1

Unsupervised methods without cross-lingual supervision
BWE-Pivot 72.2 82.1 83.3 77.7 80.1 68.1 67.9 66.1 63.1 84.7 86.5 82.6 85.8 91.3 79.2
BWE-Direct 72.2 82.1 83.3 77.7 80.1 69.7 68.8 62.5 60.5 86 87.6 83.9 87.7 92.1 80.6

MAT+MPSR 72.9 81.8 83.7 77.4 79.9 71.2 69.0 69.5 65.7 86.9 88.1 86.3 88.2 92.7 82.6

(a) Detailed Results

Training Cost Single Source Single Target

#BWEs time en-xx de-xx fr-xx es-xx it-xx pt-xx xx-en xx-de xx-fr xx-es xx-it xx-pt Overall

Supervised methods with cross-lingual supervision
Sup-BWE-Direct N(N�1) 4h 78.6 68.4 79.2 81.6 80.0 80.2 79.0 68.5 82.3 82.1 78.9 77.1 78.0

Unsupervised methods without cross-lingual supervision
BWE-Pivot 2(N�1) 8h 79.1 67.1 77.1 80.6 79.0 79.3 79.1 67.8 81.6 81.2 77.2 75.3 77.0
BWE-Direct N(N�1) 23h 79.1 67.2 79.2 81.7 79.2 79.4 79.1 67.1 82.6 82.1 78.1 77.0 77.6

MAT+MPSR N�1 5h 80.0 70.9 79.9 82.4 81.1 81.4 79.1 70.0 84.1 83.4 80.3 78.8 79.3

(b) Summarized Results

Table 1: Multilingual Word Translation Results for English, German, French, Spanish, Italian and Portuguese. The
reported numbers are precision@1 in percentage. All systems use the nearest neighbor under the CSLS distance
for predicting the translation of a certain word.

similar languages will result in reduced accuracy.
Our MAT+MPSR method, however, overcomes this
disadvantage of BWE-Pivot and achieves the best
performance on all these pairs through an explicit
multilingual learning mechanism without increas-
ing the computational cost.

Furthermore, our method also beats the BWE-
Direct approach, which supports our second hy-
pothesis that utilizing knowledge from languages
beyond the pair itself could improve performance.
For instance, there are a few pairs where BWE-
Pivot outperforms BWE-Direct, such as de-it, it-
de and pt-de, even though it goes through a third
language (English) in BWE-Pivot. This might
suggest that for some less similar language pairs,
leveraging a third language as a bridge could in
some cases work better than only relying on the
language pair itself. German is involved in all

these language pairs where BWE-Pivot outper-
forms than BWE-Direct, which is potentially due
to the similarity between German and the pivot
language English. We speculate that if choosing
a different pivot language, there might be other
pairs that could benefit. This observation serves
as a possible explanation of the superior perfor-
mance of our multilingual method over BWE-
Direct, since our method utilizes knowledge from
all languages during training.

4.2 Cross-Lingual Word Similarity

In this section, we evaluate the quality of
our MWEs on the cross-lingual word similarity
(CLWS) task, which assesses how well the sim-
ilarity in the cross-lingual embedding space cor-
responds to a human-annotated semantic similar-
ity score. The high-quality CLWS dataset from
SemEval-2017 (Camacho-Collados et al., 2017) is
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Algorithm 1 Multilingual Adversarial Training
Require: Vocabulary Vi for each language langi 2 L . Hy-

perparameter k 2 N.
1: repeat

2: . D iterations
3: for diter = 1 to k do

4: lossd = 0
5: for all langj 2 L do

6: Select at random langi 2 L
7: Sample a batch of words xi ⇠ Vi

8: Sample a batch of words xj ⇠ Vj

9: x̂t = Mi(xi) . encode to T
10: x̂j = M>

j (x̂t) . decode to Sj

11: yj = Dj(xj) . real vectors
12: ŷj = Dj(x̂j) . converted vectors
13: lossd += Ld(1, yj) + Ld(0, ŷj)

14: Update all D parameters to minimize lossd
15: . M iteration
16: loss = 0
17: for all langi 2 L do

18: Select at random langj 2 L
19: Sample a batch of words xi ⇠ Vi

20: x̂t = Mi(xi) . encode to T
21: x̂j = M>

j (x̂t) . decode to Sj

22: ŷj = Dj(x̂j)
23: loss += Ld(1, ŷj)

24: Update all M parameters to minimize loss
25: orthogonalize(M) . see §3.3
26: until convergence

same space as a selected target language.
In order to learn a multilingual embedding

space without supervision, we employ a series
of language discriminators Dl, one for each lan-
guage l 2 L . Each Dl is a binary classifier with
a sigmoid layer on top, and is trained to identify
how likely a given vector is from Sl, the embed-
ding space of language l. On the other hand, to
train the mappings, we convert a vector from a ran-
dom language langi to another random language
langj (via the target space T first). The objective
of the mappings is to confuse Dj , the language dis-
criminator for langj , so the mappings are updated
in a way that Dj cannot differentiate the converted
vectors from the real vectors in Sj . This multilin-
gual objective enables us to explicitly exploit the
relations between all language pairs during train-
ing, leading to improved performance.

Formally, for any language langj , the objective
that Dj is minimizing is:

JDj = E
i⇠L

E
xi⇠Si
xj⇠Sj

r
Ld (1, Dj(xj))+

Ld

⇣
0, Dj(M>

j Mixi)
⌘z (1)

where Ld(y, ŷ) is the loss function of D, which
is chosen as the cross entropy loss in practice. y

is the language label with y = 1 indicates a real
embedding from that language.

Furthermore, the objective of Mi for langi is:

JMi = E
j⇠L

E
xi⇠Si
xj⇠Sj

Ld

⇣
1, Dj(M>

j Mixi)
⌘

(2)

where Mi strives to make Dj believe that a con-
verted vector to langj is instead real. This adver-
sarial relation between M and D stimulates M
to learn a shared multilingual embedding space by
making the converted vectors look as authentic as
possible so that D cannot predict whether a vector
is a genuine embedding from a certain language or
converted from another language via M.

In addition, we allow langi and langj to be
the same language in (1) and (2). In this case,
we are encoding a language to T and back to
itself, essentially forming an adversarial autoen-
coder (Makhzani et al., 2015), which is reported
to improve the model performance (Zhang et al.,
2017). Finally, on Line 5 and 17 in Algorithm 1, a
for loop is used instead of random sampling. This
is to ensure that in each step, every discrimina-
tor (or mapping) is getting updated at least once,
so that we do not need to increase the number of
training iterations when adding more languages.
Computationally, when compared to the BWE-
Pivot and BWE-Direct baselines, one step of MAT
training costs similarly to N BWE training steps,
and in practice we train MAT for the same num-
ber of iterations as training the baselines. There-
fore, MAT training scales linearly with the num-
ber of languages similar to BWE-Pivot (instead of
quadratically as in BWE-Direct).

3.2 Multilingual Pseudo-Supervised

Refinement

Using MAT, we are able to obtain UMWEs with
reasonable quality, but they do not yet achieve
state-of-the-art performance. Previous research
on learning unsupervised BWEs (Lample et al.,
2018b) observes that the embeddings obtained
from adversarial training do a good job aligning
the frequent words between two languages, but
performance degrades when considering the full
vocabulary. They hence propose to use an iter-
ative refinement method (Artetxe et al., 2017) to
repeatedly refine the embeddings obtained from
the adversarial training. The idea is that we can
anchor on the more accurately predicted relations
between frequent words to improve the mappings
learned by adversarial training.

Algorithm 2 Multilingual Pseudo-Supervised Re-
finement
Require: A set of (pseudo-)supervised lexica of word pairs

between each pair of languages Lex(langi, langj).
1: repeat

2: loss = 0
3: for all langi 2 L do

4: Select at random langj 2 L
5: Sample (xi, xj) ⇠ Lex(langi, langj)
6: ti = Mi(xi) . encode xi

7: tj = Mj(xj) . encode xj

8: loss += Lr(ti, tj) . refinement loss
9: Update all M parameters to minimize loss

10: orthogonalize(M) . see §3.3
11: until convergence

When learning MWEs, however, it is desirable
to go beyond aligning each language with the tar-
get space individually, and instead utilize the re-
lations between all languages as we did in MAT.
Therefore, we in this section propose a general-
ization of the existing refinement methods to in-
corporate a multilingual objective.

In particular, MAT can produce an approxi-
mately aligned embedding space. As mentioned
earlier, however, the training signals from D for
rare words are noisier and may lead to worse
performance. Thus, the idea of Multilingual
Pseudo-Supervised Refinement (MPSR) is to in-
duce a dictionary of highly confident word pairs
for every language pair, used as pseudo supervi-
sion to improve the embeddings learned by MAT.
For a specific language pair (langi, langj), the
pseudo-supervised lexicon Lex(langi, langj) is
constructed from mutual nearest neighbors be-
tween MiEi and MjEj , among the most frequent
15k words of both languages.

With the constructed lexica, the MPSR objective
is:

Jr = E
(i,j)⇠L 2

E
(xi,xj)⇠Lex(i,j)

Lr(Mixi, Mjxj)

(3)
where Lr(x, x̂) is the loss function for MPSR, for
which we use the mean square loss. The MPSR
training is depicted in Algorithm 2.

Cross-Lingual Similarity Scaling (CSLS)

When constructing the pseudo-supervised lexica,
a distance metric between embeddings is needed
to compute nearest neighbors. Standard distance
metrics such as the Euclidean distance or cosine
similarity, however, can lead to the hubness
problem in high-dimensional spaces when used
to calculate nearest neighbors (Radovanović

et al., 2010; Dinu and Baroni, 2015). Namely,
some words are very likely to be the nearest
neighbors of many others (hubs), while others
are not the nearest neighbor of any word. This
problem is addressed in the literature by designing
alternative distance metrics, such as the inverted
softmax (Smith et al., 2017) or the CSLS (Lample
et al., 2018b). In this work, we adopt the CSLS
similarity as a drop-in replacement for cosine
similarity whenever a distance metric is needed.
The CSLS similarity (whose negation is a distance
metric) is calculated as follows:

CSLS(x, y) = 2 cos(x, y)

� 1

n

X

y02NY (x)

cos(x, y
0)

� 1

n

X

x02NX(y)

cos(x0
, y)

(4)

where NY (x) is the set of n nearest neighbors of
x in the vector space that y comes from: Y =
{y1, ..., y|Y |}, and vice versa for NX(y). In prac-
tice, we use n = 10.

3.3 Orthogonalization

As mentioned in §3, orthogonal linear mappings
are the preferred choice when learning transforma-
tions between the embedding spaces of different
languages (Xing et al., 2015; Smith et al., 2017).
Therefore, we perform an orthogonalization up-
date (Cisse et al., 2017) after each training step to
ensure that our mappings M are (approximately)
orthogonal:

8l : Ml = (1 + �)Ml � �MlM>
l Ml

where � is set to 0.001.

3.4 Unsupervised Multilingual Validation

In order to do model selection in the unsupervised
setting, where no validation set can be used, a sur-
rogate validation criterion is required that does not
depend on bilingual data. Previous work shows
promising results using such surrogate criteria for
model validation in the bilingual case (Lample
et al., 2018b), and we in this work adopt a vari-
ant adapted to our multilingual setting:

V (M, E) = E
(i,j)⇠Pij

mean csls(M>
j MiEi, Ej)

=
X

i 6=j

pij · mean csls(M>
j MiEi, Ej)

en-de en-es de-es en-it de-it es-it en-fa de-fa es-fa it-fa Average

Supervised methods with cross-lingual supervision
Luminoso .769 .772 .735 .787 .747 .767 .595 .587 .634 .606 .700
NASARI .594 .630 .548 .647 .557 .592 .492 .452 .466 .475 .545

Unsupervised methods without cross-lingual supervision
BWE-Pivot .709 .711 .703 .709 .682 .721 .672 .655 .701 .688 .695
BWE-Direct .709 .711 .703 .709 .675 .726 .672 .662 .714 .695 .698

MAT+MPSR .711 .712 .708 .709 .684 .730 .680 .674 .720 .709 .704

Table 2: Results for the SemEval-2017 Cross-Lingual Word Similarity task. Spearman’s ⇢ is reported. Lumi-
noso (Speer and Lowry-Duda, 2017) and NASARI (Camacho-Collados et al., 2016) are the two top-performing
systems for SemEval-2017 that reported results on all language pairs.

used for evaluation. The dataset contains word
pairs from any two of the five languages: English,
German, Spanish, Italian, and Farsi (Persian), an-
notated with semantic similarity scores.

In addition to the BWE-Pivot and BWE-
Direct baseline methods, we also include the
two best-performing systems on SemEval-2017,
Luminoso (Speer and Lowry-Duda, 2017) and
NASARI (Camacho-Collados et al., 2016) for
comparison. Note that these two methods are su-
pervised, and have access to the Europarl3 (for all
languages but Farsi) and the OpenSubtitles20164

parallel corpora.
Table 2 shows the results, where the perfor-

mance of each model is measured by the Spear-
man correlation. When compared to the BWE-
Pivot and the BWE-Direct baselines, MAT+MPSR
continues to perform the best on all language pairs.
The qualitative findings stay the same as in the
word translation task, except the margin is less sig-
nificant. This might be because the CLWS task is
much more lenient compared to the word transla-
tion task, where in the latter one needs to correctly
identify the translation of a word out of hundreds
of thousands of words in the vocabulary. In CLWS
though, one can still achieve relatively high corre-
lation in spite of minor inaccuracies.

On the other hand, an encouraging result is
that when compared to the state-of-the-art super-
vised results, our MAT+MPSRmethod outperforms
NASARI by a very large margin, and achieves
top-notch overall performance similar to the com-
petition winner, Luminoso, without using any bi-
texts. A closer examination reveals that our unsu-
pervised method lags a few points behind Lumi-

3
http://opus.nlpl.eu/Europarl.php

4
http://opus.nlpl.eu/

OpenSubtitles2016.php

noso on the European languages wherein the su-
pervised methods have access to the large-scale
high-quality Europarl parallel corpora. It is the
low-resource language, Farsi, that makes our un-
supervised method stand out. All of the unsuper-
vised methods outperform the supervised systems
from SemEval-2017 on language pairs involving
Farsi, which is not covered by the Europarl bitexts.
This suggests the advantage of learning unsuper-
vised embeddings for lower-resourced languages,
where the supervision might be noisy or absent.
Furthermore, within the unsupervised methods,
MAT+MPSR again performs the best, and attains
a higher margin over the baseline approaches on
the low-resource language pairs, vindicating our
claim of better multilingual performance.

5 Conclusion

In this work, we propose a fully unsupervised
model for learning multilingual word embeddings
(MWEs). Although methods exist for learning
high-quality unsupervised BWEs (Lample et al.,
2018b), little work has been done in the unsuper-
vised multilingual setting. Previous work relies
solely on a number of unsupervised BWE models
to generate MWEs (e.g. BWE-Pivot and BWE-
Direct), which does not fully leverage the interde-
pendencies among all the languages. Therefore,
we propose the MAT+MPSR method that explicitly
exploits the relations between all language pairs
without increasing the computational cost. In our
experiments on multilingual word translation and
cross-lingual word similarity (SemEval-2017), we
show that MAT+MPSR outperforms existing unsu-
pervised and even supervised models, achieving
new state-of-the-art performance.

For future work, we plan to investigate how our

•N languages, each with trained monolingual embeddings as input 

•Learn N-1 orthogonal matrices to map all languages into the same space 

•Explicitly model the interaction between all pairs of languages 

•Despite exploiting O(N2) language pairs, our method scales linearly with N 

•Step 1: Multilingual Adversarial Training (MAT) 

•Step 2: Multilingual Pseudo-Supervised Refinement (MPSR)

• MAT does a good job for more 
frequent words but may produce 
noisier signals for rare words. 
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predicted relations between frequent 
words to improve performance on full 
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mutual nearest neighbors among 15k 
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TL;DR: A multilingual generalization of the Facebook MUSE (Conneau et al., 2017) embeddings. 
Try our method out if you are using MUSE to map multiple languages into a single space! 
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