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Large-scale annotated datasets are an indispensable ingredient of modern Nat-

ural Language Processing (NLP) systems. Unfortunately, most labeled data is

only available in a handful of languages; for the vast majority of human lan-

guages, few or no annotations exist to empower automated NLP technology.

Cross-lingual transfer learning enables the training of NLP models using

labeled data from other languages, which has become a viable technique for

building NLP systems for a wider spectrum of world languages without the

prohibitive need for data annotation. Existing methods for cross-lingual trans-

fer learning, however, require cross-lingual resources (e.g. machine translation

systems) to transfer models across languages. These methods are hence futile

for many low-resource languages without such resources.

This dissertation proposes a deep representation learning approach for low-

resource cross-lingual transfer learning, and presents several models that (i)

progressively remove the need for cross-lingual supervision, and (ii) go beyond

the standard bilingual transfer case into the more realistic multilingual setting.

By addressing key challenges in two important sub-problems, namely multi-

lingual lexical representation and model transfer, the proposed models in this

dissertation are able to transfer NLP models across multiple languages with no

cross-lingual resources.
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CHAPTER 1

INTRODUCTION

1.1 Cross-Lingual Transfer for Natural Language Processing

A variety of natural language processing (NLP) tasks have benefited from the

recent advance of modern deep neural network models. Most of these deep neu-

ral models, however, require large-scale annotated datasets for training. While

we have witnessed the increasing availability of such annotated datasets for

various NLP problems in recent years, most of these annotations only exist in

a handful of high-resource languages such as English. Most other world lan-

guages, however, are not able to benefit from the deep learning revolution since

they do not enjoy such an abundance of labeled data for training modern deep

neural networks for a variety of NLP tasks.

As it is prohibitive and inefficient to manually annotate training data for

all languages of interest, cross-lingual NLP, or more technically, cross-lingual

transfer learning (CLTL) comes to the rescue and enables the learning of mod-

els for a target language using annotated data from other languages (source lan-

guages) (Yarowsky et al., 2001).

Now we introduce some basic concepts of cross-lingual transfer learning,

which will be revisited in more details in Chapter 2.

Bilingual Transfer and Multilingual Transfer Traditionally, research on

cross-lingual transfer learning mostly investigates the standard bilingual transfer

setting, where the training data (for a specific NLP task) comes from a single
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source language. In practice, however, it is more often the case that the labeled

data is available in a few languages, and it is desirable to be able to utilize all

of them when transferring to other languages to further boost the performance

on the target language. This scenario is referred to as multi-source cross-lingual

transfer learning or multilingual transfer learning.

Supervision for Cross-Lingual Transfer Learning In this dissertation, we

identify three common types of supervision, or resources, for performing cross-

lingual transfer, and we name them type 0, I, and II supervision, respectively.

First of all, cross-lingual transfer learning by definition needs some train-

ing data in the source language(s) for a certain NLP task (type 0 supervision),

which is always required.

Another kind of supervision is task-specific target language annotation

(type I supervision). The availability of such type I supervision usually de-

termines the objective of the cross-lingual transfer task. When labeled data is

available in the target language, the goal of cross-lingual transfer in this case

is usually to leverage additional training data from other language(s) in order

to achieve a better performance than using the target language training data

alone. On the other hand, there are cases when no target language annotations

are available, and cross-lingual transfer aims to build a system for the target

language solely relying on the training data from other (source) languages.

The last common type of supervision is general-purpose cross-lingual re-

sources (type II supervision), also referred to as cross-lingual supervision. Exam-

ples of this kind of supervision include generic-domain parallel corpora or a

Machine Translation (MT) system. These cross-lingual resources are not task-
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specific and can be used for transferring models in multiple NLP tasks, which

are especially important in the absence of type I supervision. For instance, a

commonly used approach for cross-lingual transfer without type I supervision

is to use a Machine Translation system to translate the target language text into

the source language, and employ the supervised source language NLP model

to make predictions.

Whether a cross-lingual transfer learning system leverages type II supervi-

sion often dictates the high-level methodology. In the absence of type I supervi-

sion, most prior work employs resource-based methods (see Chapter 2) that resort

to type II supervision to replace the need for target language training data. On

the other hand, such type II supervision is also difficult to obtain for many low-

resource languages. Therefore, this dissertation concentrates on eliminating the

dependence on both type I and type II supervision, by proposing a series of

deep neural network models that learn better feature representations for cross-

lingual transfer.

Feature Representation Learning for Cross-Lingual Transfer In this disserta-

tion, we focus on learning deep feature representations (see Chapter 2 for more

background information) that are better suited for cross-lingual transfer. In par-

ticular, two sub-problems need to be addressed when pursuing this deep repre-

sentation learning methodology. First, a unique challenge faced by cross-lingual

transfer learning, compared to other transfer learning problems such as domain

adaptation, is the disparate input space problem. For instance, different languages

such as English and Chinese barely share any words at all, leading to almost dis-

joint vocabulary sets. As a first step, the model needs to build a cross-lingual

lexical representation in order to create a common input space. In addition, the

3



divergence between languages is beyond the word level, and it further calls for

an effective model transfer method for transferring the NLP models from the

source language(s) to the target.

This dissertation consists of several works that progressively eliminate the

need for both type I and type II supervision, by addressing key challenges in

both problems of model transfer and cross-lingual lexical representation. It ex-

tends the frontier of cross-lingual transfer learning and enables the application

of modern deep neural NLP models to an increasing number of low-resource

languages.

1.2 Contributions

Cross-Lingual Model Transfer without Parallel Training Data. Unlike most

traditional work for cross-lingual model transfer that directly rely on type II

supervision (parallel data), we propose Language-Adversarial Training, a model-

based approach that only requires unlabeled monolingual texts from each lan-

guage during training. This is achieved by learning a language-invariant hid-

den feature space in which the distribution of the feature vectors of samples

from the source and target languages are similar to each other, so that the knowl-

edge learned on the source language training data can be better transferred to

the target language. Experiments show that our model achieves state-of-the-art

performance on cross-lingual text classification (Chapter 3).

Model Transfer for Multiple Languages and Domains. We further propose a

theoretically sound generalization of Language-Adversarial Training for learn-

4



ing an invariant feature space among multiple populations (e.g. languages or

domains). In particular, we introduce the Multinomial Adversarial Network

(MAN), a general machine learning framework for minimizing the divergence

among multiple probability distributions. MAN is applied to multi-domain text

classification to validate its effectiveness where it outperforms previous models

(Chapter 4), and additional experiments can be found in Chapter 5 when MAN is

applied to the multilingual model transfer task.

Multilingual Model Transfer with more than Language-Invariant Features.

We take one more step forward and devise a novel multilingual model transfer

approach, which, unlike most prior work, can utilize not only the language-

invariant features, but also language-specific features from each individual

source language for transferring to the target language. This is extremely help-

ful in the multilingual transfer setting, especially when the target language is

similar to a subset of the source languages. Strong performance is attained in

multiple multilingual model transfer experiments on various NLP tasks ranging

from text classification to sequence tagging (Chapter 5).

Unsupervised Multilingual Lexical Representation. We then study the other

fundamental sub-problem in cross-lingual transfer learning, the cross-lingual

lexical representation problem, and propose the first method for learning unsu-

pervised multilingual word embeddings (See Chapter 2 for more background

information). It is shown that our model outperforms unsupervised and even

supervised baseline methods in two separate experiments (Chapter 6).
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Zero-Resource Cross-Lingual Transfer Learning. Finally, by combining these

efforts in eliminating type II supervision for both the model transfer and lexi-

cal representation problems, we are able to perform zero-resource cross-lingual

transfer where neither type I nor type II supervision is needed. It is referred to

as zero-resource in a sense that we are able to transfer the type 0 supervision

to a different language using no additional resources. This makes cross-lingual

transfer methods more widely applicable to an increasing number of low-source

languages, where both annotated data and cross-lingual resources are scarce.

Experiments in Chapter 3 first show promising results, and more experiments

of zero-resource cross-lingual transfer can be found in Chapter 5.

1.3 Roadmap

The remaining of this dissertation is organized as follows.

We first introduce, in Chapter 2, the relevant background information on

cross-lingual transfer learning and deep neural network models for NLP.

We proceed to tackle the cross-lingual model transfer problem in Chapter 3,

4 and 5, aiming to remove the requirement of type I and type II supervision.

In Chapter 3, we present language-adversarial training, a pioneering effort to-

wards eliminating the need for parallel data when performing cross-lingual

model transfer. We give a theoretically sound generalization of language-

adversarial training to support multiple populations (languages or domains)

in Chapter 4, and propose a further improved approach for multilingual model

transfer in Chapter 5.

6



Furthermore, we study the cross-lingual lexical representation problem in

Chapter 6, and present a model for learning unsupervised multilingual word

embeddings.

Finally, we conclude in Chapter 7 by summarizing the contributions of this

dissertation and outline possible directions for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we present background knowledge and review existing re-

search on the key problem that this dissertation tackles, cross-lingual transfer

learning, as well as the key methodology that this dissertation takes, deep rep-

resentation learning for natural language processing.

2.1 Cross-Lingual Transfer Learning

The diversity of human languages poses a critical challenge on Natural Lan-

guage Processing, especially in the modern deep learning age, as it is pro-

hibitive to obtain sufficient training data for many NLP tasks in most of the

world languages. Cross-lingual NLP, or more technically cross-lingual transfer

learning (CLTL), aims at this problem and offers a possibility of learning models

for a target language using labeled training data from other (source) languages,

and has been applied to a wide variety of NLP tasks such as part-of-speech

tagging (Yarowsky et al., 2001), syntactic parsing (Hwa et al., 2005), text clas-

sification (Bel et al., 2003), named entity recognition (Täckström et al., 2012),

semantic role labeling (Padó and Lapata, 2009), and many more.

In this section, we review the background of cross-lingual transfer learning

along three dimensions.
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2.1.1 Supervision for Cross-Lingual Transfer Learning

As summarized in Chapter 1, there are three common types of supervision ex-

ploited in cross-lingual transfer learning. Namely, training data in the source lan-

guage(s) (type 0 supervision), training data in the target language (type I super-

vision), and general-purpose cross-lingual resources (type II supervision). Here,

type 0 and type I supervision is task-specific, meaning different training data is

needed for different NLP tasks. Type II supervision, however, can be general-

purpose in that the same cross-lingual resource can be used to transfer NLP

models for multiple tasks, since type II supervision (such as Machine Transla-

tion systems) provides general knowledge for connecting the semantics of two

or more languages.

Cross-lingual transfer learning by definition requires type 0 supervision. On

the other hand, the objective and approaches of cross-lingual transfer learning

vary in the literature depending on the availability of type I and type II super-

vision. In particular, given that the motivation of cross-lingual transfer learning

is to address the scarcity of annotated data in the target language, many previ-

ous works assume no availability of type I supervision (other than that used for

validating and evaluating the models). For simplicity, we refer to this setting

as the unsupervised CLTL setting, for the CLTL system is unsupervised in the

target language. Most prior work relies on type II supervision in this case to

bridge the language barrier between the source and target languages, such as

parallel corpora (sentence translation pairs) (Yarowsky et al., 2001; Hwa et al.,

2005), bilingual dictionaries (word translation pairs) (Prettenhofer and Stein,

2010), or Machine Translation systems (Wan, 2009). On the other hand, when

type I supervision is available for training a monolingual supervised model for
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a certain NLP task in the target language (the supervised CLTL setting), the

goal of CLTL is usually to utilize the additional training data available in the

source language(s) in order to improve the performance on top of the monolin-

gual target language NLP model. This direction is relatively less investigated

as i) it requires annotated training data in the target language and can thus be

only applied to a few languages in practice, and ii) the addition of source lan-

guage training data is usually beneficial only if the target language is close to

the source. Many CLTL approaches designed for the more challenging unsu-

pervised setting can be applied to the supervised setting as well, while other

methods are specifically targeting the supervised setting with techniques such

as multi-task learning, fine-tuning, etc (Swietojanski et al., 2012; Yang et al.,

2017).

2.1.2 Resource-based and Model-based Cross-Lingual Transfer

Learning

While the existence of type I supervision determines the motivation and objec-

tive of CLTL, whether a CLTL method leverages type II supervision, in con-

trast, often dictates its high-level methodology. Based on the role of type II

supervision, CLTL methods can be loosely divided into two categories: resource-

based CLTL and model-based CLTL. Resource-based methods center around a par-

ticular cross-lingual resource for connecting the source and target languages,

while model-based approaches seek to directly transfer the source language

NLP model into the target language.
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Resourced-based CLTL One common type of resource-based CLTL is

achieved via cross-lingual projection. For instance, in annotation projection, the

source language NLP model can be projected through a parallel corpus to gen-

erate pseudo-supervision for the target language (Yarowsky et al., 2001; Hwa

et al., 2005) by making predictions on the source side of the parallel corpus and

assume the same labels apply to the target side of the bitext. To reduce the noise

generated in this projection process, some works propose to project the expecta-

tion over the labels (Wang and Manning, 2014), or to project soft labels (Xu and

Yang, 2017). Another family of methods rely on bilingual lexica (word trans-

lation pairs) to bridge the language gap (Bel et al., 2003; Mihalcea et al., 2007;

Prettenhofer and Stein, 2010). Finally, one line of research focuses on the use

of machine translation (MT) systems to achieve CLTL (Wan, 2009; Amini et al.,

2009; Zhou et al., 2016).

Model-based CLTL In contrast, model-based CLTL aims to directly transfer

the NLP model from the source language to the target. This can be done, for

example, through sharing the model parameters, or learning language-agnostic

features. A key challenge, though, is the disparate input space problem, where

the source and the target languages may have considerably dissimilar vocabu-

lary sets, making building a successful model-based transfer system highly chal-

lenging. This problem contributes to the fact that model-based CLTL is much

less investigated in the past compared to resource-based ones, despite model-

based CLTL being more appealing in that it does not require additional type II

supervision. Some prior work circumvents the disparate input space problem

by relying only on delexicalized features (e.g. part-of-speech tags) so that the

source model can be directly applied to the target language (McDonald et al.,
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2011). However, such methods are only applicable to certain NLP tasks such as

parsing, and generally do not work well for distant language pairs.

Another paradigm that can lead to model-based CLTL is to explicitly ad-

dressing the disparate input space problem first by utilizing cross-lingual lex-

ical representation, which provides a shared input representation for two or

more languages. For instance, one can use characters as the shared input rep-

resentation (Yang et al., 2017) if the source and target languages have the same

alphabet. Alternatively, one can build an interlingual lexical (or document) rep-

resentation using techniques such as latent semantic indexing (Littman et al.,

1998), kernel canonical correlation analysis (Vinokourov et al., 2003), or more

recently cross-lingual word embeddings (Klementiev et al., 2012; Mikolov et al.,

2013b). Using these cross-lingual lexical representations, the remainder of the

CLTL task, the cross-lingual model transfer part, can be reduced to a domain

adaptation problem, where abundant literature exists on model-based transfer

learning methods (Pan and Yang, 2010) such as parameter sharing, fine-tuning,

and learning shared features. One caveat, though, is that most of these tradi-

tional approaches for learning cross-lingual lexical representation are resource-

based that require type II supervision, and more recent advances in this field

are discussed in Section 2.2.3.

2.1.3 Bilingual and Multilingual Transfer Learning

Historically, most research on cross-lingual transfer learning focuses on the sim-

plest and most fundamental setting, the bilingual transfer setting, where the

training data comes from a single source language. On the other hand, the mul-
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tilingual transfer setting, also known as the multi-source CLTL setting, refers

to the scenario where type 0 supervision in multiple source languages is lever-

aged simultaneously when transferring to the target language. Previous work

shows that it can result in significant performance boost over the bilingual set-

ting due to the use of training data in additional source languages (McDonald

et al., 2011). While the multi-source CLTL setting can sometimes be viewed as a

straightforward generalization of the bilingual transfer setting, and some meth-

ods designed for bilingual transfer can be adapted to support multiple source

languages, it is still desirable to study dedicated approaches for the multilingual

transfer (Hajmohammadi et al., 2014; Guo et al., 2016), because i) not all bilin-

gual transfer methods can be applied to the multilingual setting, and ii) it is

often beneficial to devise a more sophisticated mechanism specifically designed

for the multilingual transfer that can take into account the relation between all

source languages and the target (instead of treating each source-target pair as

an independent transfer task or a simple aggregation of all source languages).

Another factor that contributes to the fact that multilingual transfer is less

studied is that resource-based methods are less suitable for the multi-source

transfer setting, as it is prohibitive to obtain type II supervision (e.g. parallel cor-

pora) between all source-target language pairs. On the other hand, the model-

based CLTL approaches proposed in this dissertation, are free of this constraint

and can be readily employed for the multilingual transfer task to enjoy the per-

formance boost over the standard bilingual transfer case without the need for

additional resources (Chapter 4 and Chapter 5).
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2.2 Deep Representation Learning

A wide range of Natural Language Processing (NLP) tasks can be formulated

as prediction tasks, where the goal is to seek the most likely output y ∈ Y given

an input x ∈ X. Here X and Y are the sets of all possible inputs and outputs. A

few examples of NLP tasks formulated this way include:

• Predicting the sentiment of a sentence, where X is the set of all possible

English sentences and Y = {positive,neutral,negative}.

• Predicting the most likely succeeding word given a partial sentence (lan-

guage modeling), where X include all possible prefixes of English sen-

tences, and Y is the set of all English words.

• Translating an English sentence into French, where X is the set of all En-

glish sentences, while Y is the set of all French sentences.

A model for solving a predictive NLP task can be viewed as a function ŷ =

f (x; θ) that predicts an output ŷ given the input x, and is parametrized by a set

of parameters (weights) θ. A probabilistic model f (x; θ) = p(y|x; θ) predicts the

probability of the output y given the input x, where the model prediction ŷ is

determined by finding the most likely output label:

ŷ = f̂ (x; θ) = arg max
y

p(y|x; θ) (2.1)

There are multiple approaches for deriving a good model f (x; θ), such as

manually writing a set of rules for predicting ŷ given an input x. A more ap-

pealing method is to use Machine Learning to automatically learn the best set

of parameters θ based on training data. In the supervised learning setting, we
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assume access to a set of (x, y) pairs which can be used to train our model to

predict the desired output for a given input. We denote such training data as

D = {(xi, yi) ∈ X × Y} |Ni=1 (2.2)

The optimal parameters θ̂ are learned by minimizing a loss function L between

the gold-standard labels yi on the training data as well as the model predictions.

θ̂ = arg min
θ

∑
(xi,yi)∈D

L(yi, f (xi; θ)) (2.3)

For instance, in the commonly adopted Maximum Likelihood Estimation (MLE)

paradigm, the likelihood of observing the training data under a probabilis-

tic model is maximized in order to obtain θ̂. Please refer to the following

book (Murphy, 2012) for more details on Machine Learning.

In a NLP model f (x; θ), the first step is often to decide how to represent

the input x. For instance, how do we represent a word? Furthermore, given

the word representations, how do we learn representations for higher-level lan-

guage structures such as sentences or even documents? Traditionally, deciding

on the data representation takes a tremendous amount of human expertise and

feature engineering. For example, domain experts look at the NLP task at hand,

and make a series of model decisions such as:

• Whether to use morphological features (word lemmas, capitalization,

etc.)?

• Whether to use syntactical features (part-of-speech tags, parse trees, etc.)?

• Whether to use additional features from external knowledge bases (e.g.

WordNet hypernyms, a lexicon of subjective words, etc.)?

• How much context to retain and how to represent it?
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Figure 2.1: Abstract view of a sentiment classifier.

These decisions are difficult, and require expertise and extensive trials and er-

rors. Moreover, models engineered this way do not generalize well to a different

task, and one needs to start from scratch when facing a new task.

On the other hand, (deep) representation learning strives to automatically learn

useful representations for a given task relying solely on the training data, and

has enjoyed unmatched success in recent years in various Artificial Intelligence

fields in and outside of NLP. To illustrate the high-level architecture of a mod-

ern deep representation learning system, Figure 2.1, as an example, shows an

overview of a sentiment classifier model, which predicts the sentiment of given

piece of text. Here each word in the input x is first represented by the word

representations (Section 2.2.1) of choice, which is further passed to a feature

extractor (usually a deep neural network) to learn higher-level hidden repre-

sentations (Section 2.2.2) that retain useful features for solving the sentiment

classification task.1 Please refer to the book by Goodfellow et al. (2016) for a

1Note that not all systems learn representations following this two-step paradigm. For ex-
ample, Zhang et al. (2015) directly model the input document as a sequence of characters, elim-
inating the step of word representation learning.
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(much) more detailed introduction to Deep Learning.

Finally, despite not the focus of this dissertation, it is worth mentioning that

the arg max operation in Equation 2.1 might not be straightforward to take de-

pending on the task. For instance, when Y is a moderately sized set of pre-

defined categories such as the sentiment polarities (Such tasks are referred as

classification tasks.), one can simply iterate over all possible y values and find the

most likely label. On the other hand, Y can be extremely large or even infinite

(as in the translation case), and finding the most likely ŷ (or an approximation

of it) is a non-trivial challenge and an open research direction called structured

prediction (Bakir et al., 2007). For simplicity, we will be mostly focusing on the

non-structured output case where y is a scalar. Some of the techniques presented

in this dissertation can be applied to the structured output case as well, though,

as shown in Chapter 5.

The following three subsections will first introduce the two representation

learning stages of learning word representations (Section 2.2.1) and hidden

(document) representations (Section 2.2.2), and finally discuss a sub-task in

word representation learning that is very relevant to cross-lingual NLP — the

learning of cross-lingual word embeddings (Section 2.2.3).

2.2.1 Distributed Word Representations

Word representation provides a mathematical representation of the words (or

tokens) in the input text, and is the first step of many NLP models. Tradition-

ally, a widely-used word representation method is called one-hot representation,

which represents each token as a one-hot vector, where each dimension in the

17



vector corresponds to a unique word type and the length of the vector equals to

the size of the vocabulary (all word types in English). Only the dimension corre-

sponding to the token is set to 1, while all other dimensions are set to 0. A major

problem with this one-hot representation is that it represents each word type as

an atomic and independent categorical feature, disregarding any similarity or

relationship between different words. As the vectors for any two word types

are orthogonal to each other, it makes the model unable to generalize to unseen

word types and the system may hence suffer from training data sparsity.

Distributed Word Representations (also known as word embeddings) aim

to address this draw back by embedding words into a low-dimensional real-

valued vector space2 instead of a high-dimensional sparse one-hot vector space.

The resulted embedding space captures certain syntactic and semantic relation-

ships between various word types, and can provide much better generalization

across different words. For instance, in a sentiment classification model where

the training data has a positive sample of “The movie was great.”. Us-

ing the one-hot representation, the system could not generalize to “The movie

was awesome.” assuming that it has never seen it during training, because the

words “great” and “awesome” are treated as two separate and independent

words orthogonal to each other. On the other hand, with distributed word rep-

resentations that can capture similarities between words, the model will hope-

fully embed the two words close to each other in the vector space, providing

improved generalization to unseen word types.

One commonly adopted principle for inducing such distributed word rep-

resentations is the distributional hypothesis (Harris, 1954): words occurring in

2Also known as vector space model. There are distributed word representations that adopt
alternative forms of representation such as matrix space models that represent a word using a
matrix instead of a vector (Rudolph and Giesbrecht, 2010).
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similar contexts share similar meaning. Therefore, such co-occurrence statis-

tics, which is readily available from the enormous unlabeled text data, can be

leveraged to learn word embeddings. There are many successful methods pro-

posed in the literature (Bengio et al., 2003; Turian et al., 2010; Collobert et al.,

2011; Mikolov et al., 2013a; Pennington et al., 2014; Bojanowski et al., 2017), and

word embeddings have become the de facto standard for word representation

in modern deep neural NLP models.

2.2.2 Hidden Representations for Sentences and Documents

As shown in Figure 2.1, for a predictive NLP task such as text classification, it is

often necessary to go beyond word representations and learn higher-level repre-

sentations that take into account the contexts in the input sentence or document3

(the Feature Extractor box in Figure 2.1). These representations are known as

hidden representations (or features), because they are often the outputs of some

hidden layers4 inside a deep neural network (Goodfellow et al., 2016).

In this section, we present several commonly adopted approaches for learn-

ing hidden text representations, using the text classification task as an exam-

ple. They are referred to as feature extractors in Figure 2.1 since they take the

word representations of a various-length input sequence of tokens, and output

a fixed-length feature vector that are learned automatically and can be used for

predicting the task label y.

3For simplicity, we in this dissertation denote the input x as a sentence unless otherwise noted,
despite that x can sometimes have multiple sentences in practice.

4Intermediate network layers that are not the input or output layer.
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Bag-of-Words Composition One of the simplest way of combining all the

word presentations into a single feature vector is the (orderless) bag-of-words

representation. Iyyer et al. (2015) propose Deep Averaging Networks that first

take the arithmetic mean of all the word embeddings in the input sequence, and

pass it through a number of fully-connected hidden layers to form the final fea-

ture vector. This representation does not consider the order of the words at all

and inevitably loses many potentially useful information. It nonetheless shows

relatively competitive performance (Iyyer et al., 2015) and is extremely simple

and efficient.

Convolutional Neural Networks (CNN) One clear limitation of the bag-of-

words composition is that language far more than a simple aggregation of

words. For instance, in the translation task, there are many idioms and set

phrases in each language whose meaning cannot be directly deduced from those

of the individual words. Convolutional Neural Networks (Lecun et al., 1998)

can extract local features with convolving filters. In the case of NLP, it means

that the context around each word is taken into account to produce a local fea-

ture vector for that word, and a pooling mechanism (such as max pooling) is

then used to find the most salient local features (Kim, 2014).

Recurrent Neural Networks (RNN) Despite CNN being able to take context

into account, it still does not consider one of the key factors in human languages:

word ordering. Therefore, CNN works well on tasks where finding salient lo-

cal features generally suffices, such as the sentiment classification task where

identifying key words and phrases expressing strong sentiment can help solve

many cases. On the other hand, more sophisticated tasks that involve a compre-
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hensive understanding of the entire sentence or document such as the machine

translation task would require a sequential composition method for learning hid-

den representations that can incorporate word order information. Recurrent

Neural Networks is an autoregressive model that composes the hidden repre-

sentation starting from the beginning of the sentence, and recursively processes

each token one at a time to form a hidden feature vector. The processing of each

token is called a timestamp, and the parameters of a RNN are shared across all

timestamps. The RNN output at each timestamp can be viewed as a contextu-

alized word representation that takes into account the past utterance (left context)

of the token. In order to generate a fixed-length feature vector for the entire

input, a pooling mechanism is again needed. For instance, one can use the last

hidden output as the representation for the entire input, or one can take the av-

erage of all hidden outputs. A more sophisticated pooling technique is the self-

attention (Cheng et al., 2016) mechanism that automatically learns a linear com-

bination of all hidden outputs as the final feature vector. There are many archi-

tectures for the RNN unit (the neural model that processes each timestamp), and

the ones widely used in practice are mostly gated ones such as LSTM (Hochre-

iter and Schmidhuber, 1997) or GRU (Cho et al., 2014). In addition, to overcome

the drawback that a RNN only takes into account the context on the left, one

can combine a left-to-right RNN with a right-to-left one to form a bidirectional

RNN (Schuster and Paliwal, 1997) that considers contexts in both directions.

Other Structural Compositions In RNN, the sentence representation is com-

posed in the natural order (left to right). It is possible, however, to adopt al-

ternative composition strategies when learning the hidden representations. For

instance, one idea is to leverage the syntactic structure (parse tree) of the input
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sentence, and compose the sentence representation following the tree structure

using a Recursive Neural Network (Socher et al., 2013; Tai et al., 2015).

Recently there is a new Transformer model that composes the hidden repre-

sentations solely based on self-attention (Vaswani et al., 2017), which has shown

strong performance on multiple NLP tasks.

2.2.3 Cross-Lingual Word Embeddings

One subfield of word representation learning that is pertinent to this disserta-

tion is the learning of cross-lingual word representation. With the rise of dis-

tributed word representations, it has also become popular to learn distributed

cross-lingual lexical representation, namely cross-lingual word embeddings.

Cross-lingual word embeddings project words from two or more languages into

a single semantic space so that words with similar meanings reside closer to

each other regardless of language.

Traditionally, most methods for learning cross-lingual word embeddings

were supervised, relying on cross-lingual supervision such as bilingual dictio-

naries (Klementiev et al., 2012; Mikolov et al., 2013b), or parallel corpora (Zou

et al., 2013; Gouws et al., 2015). Some methods attempted to alleviate the de-

pendence on such cross-lingual supervision by only requiring comparable sen-

tences or even documents (Vulić and Moens, 2015).

On the other hand, there are efforts focusing on the multilingual case to learn

a shared embedding space across more than two languages (Ammar et al., 2016;

Duong et al., 2017), resulting in a set of multilingual word embeddings (MWEs).
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In comparison, the standard cross-lingual embeddings between two languages

are referred to as bilingual word embeddings (BWEs). Please refer to this sur-

vey (Ruder et al., 2017) for a more detailed coverage on existing research of

cross-lingual word embedding induction.
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CHAPTER 3

LANGUAGE-ADVERSARIAL TRAINING FOR CROSS-LINGUAL

MODEL TRANSFER

In this chapter, we propose the Language-Adversarial Training technique

for the cross-lingual model transfer problem, which learns a language-invariant

hidden feature space to achieve better cross-lingual generalization using only

unlabeled monolingual texts from the source language and the target. It is a pi-

oneering effort towards removing type II supervision (cross-lingual resources)

from cross-lingual model transfer.

This chapter is based on (Chen et al., 2016; Chen et al., 2018b).

In this chapter, we focus on a simple yet fundamental NLP task, text classifi-

cation, and present our language-adversarial training approach in the context of

cross-lingual text classification (CLTC). In the text classification task, the input

is a piece of text (a sentence or document), and the output is chosen from a set

of predetermined categories. For instance, one may want to classify a product

review into five categories corresponding to its star rating (1-5).

Similar to all cross-lingual transfer learning tasks, the goal of CLTC is to

leverage the abundant resources of a source language (likely English, denoted

as SOURCE) in order to build text classifiers for a low-resource target language

(TARGET). Our model is able to tackle the more challenging unsupervised CLTC

setting, where no target language annotations (type I supervision) are available.

On the other hand, our method remains superior in the semi-supervised setting
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with a small amount of type I supervision available (See Section 3.3.3).

3.1 Related Work

Cross-lingual Text Classification is motivated by the lack of high-quality la-

beled data in many non-English languages (Bel et al., 2003; Mihalcea et al., 2007;

Wan, 2008; Banea et al., 2008, 2010; Prettenhofer and Stein, 2010). Our work is

comparable to these in objective but very different in method. Most previous

works are resource-based methods that are directly centered around some kind

of type II supervision (cross-lingual resources), such as machine translation sys-

tem, parallel corpora, or bilingual lexica, in order to transfer the knowledge

learned from the source language into the target. For instance, some recent ef-

forts make direct use of a parallel corpus either to learn a bilingual document

representation (Zhou et al., 2016) or to conduct cross-lingual distillation (Xu and

Yang, 2017).

Domain Adaptation tries to learn effective classifiers for which the training and

test samples are from different underlying distributions (Blitzer et al., 2007; Pan

et al., 2011; Glorot et al., 2011; Chen et al., 2012; Liu et al., 2015). This can be

thought of as a generalization of cross-lingual text classification. However, one

main difference is that, when applied to text classification tasks, most of these

domain adaptation work assumes a common feature space such as a bag-of-

words representation, which is not available in the cross-lingual setting. See

Section 3.3.2 for experiments on this. In addition, most works in domain adap-

tation evaluate on adapting product reviews across domains (e.g. books to elec-

tronics), where the divergence in distribution is less significant than that be-

tween two languages.
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Adversarial Networks are a family of neural network models that have two

or more components with competing objectives, and have enjoyed much suc-

cess in computer vision (Goodfellow et al., 2014; Ganin et al., 2016). A series

of work in image generation has used architectures similar to ours, by pitting a

neural image generator against a discriminator that learns to classify real versus

generated images (Goodfellow et al., 2014). More relevant to this work, adver-

sarial architectures have produced the state-of-the-art in unsupervised domain

adaptation for image object recognition: Ganin et al. (2016) train with many la-

beled source images and unlabeled target images, similar to our setup. In addi-

tion, other recent work (Arjovsky et al., 2017; Gulrajani et al., 2017) proposes

improved methods for training Generative Adversarial Nets. In Chen et al.

(2016), we proposed language-adversarial training, the first adversarial neural net

for cross-lingual NLP, which will be described in this chapter. As of the writing

of this dissertation, there are many more recent works that adopt adversarial

training for cross-lingual NLP tasks, such as cross-lingual text classification (Xu

and Yang, 2017), cross-lingual word embedding induction (Zhang et al., 2017;

Lample et al., 2018) and cross-lingual question similarity reranking (Joty et al.,

2017).

3.2 Language-Adversarial Networks (LAN)

The central hypothesis of language-adversarial training is that an ideal model

for CLTC should learn features that both perform well on text classification for

the SOURCE language, and are invariant with respect to the shift in language.

Therefore, as shown in Figure 3.1, our proposed model, Language-Adversarial

Network (LAN), has a joint feature extractor F which aims to learn features that
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Figure 3.1: LAN with Chinese as the target language. The lines illustrate
the training flows and the arrows indicate forward/backward
passes. Blue lines show the flow for English samples while Yel-
low ones are for Chinese. Jp and Jq are the training objectives
of P and Q, respectively (Section 3.2.2). The parameters of F , P
and the embeddings are updated together (solid lines). The pa-
rameters of Q are updated using a separate optimizer (dotted
lines) due to its adversarial objective.

aid prediction of the text classifier P, and hamper the language discriminator Q,

whose goal is to identify whether an input text is from SOURCE or TARGET. The

intuition is that if a well-trainedQ cannot tell the language of a given input using

the features extracted by F , those features are effectively language-invariant. Q

is hence adversarial since it does its best to identify language from learned fea-

tures, yet good performance from Q indicates that LAN is not successful in learn-

ing language-invariant features. Upon successful language-adversarial train-

ing, F should have learned features discriminative for text classification, and

at the same time providing no information for the adversarial Q to guess the

27



language of a given input.

As seen in Figure 3.1, LAN is exposed to both SOURCE and TARGET texts

during training. Unlabeled SOURCE (blue lines) and TARGET (yellow lines) data

go through the language discriminator, while only the labeled SOURCE data

pass through the text classifier1. The feature extractor and the text classifier are

then used for TARGET texts at test time. In this manner, we can train LAN with

labeled SOURCE data and only unlabeled TARGET text. When some labeled

TARGET data exist, LAN could naturally be extended to take advantage of that

for improved performance (Section 3.3.3).

3.2.1 Network Architecture

As illustrated in Figure 3.1, LAN has two branches. There are three main com-

ponents in the network, a joint feature extractor F that maps an input sequence x

to a fixed-length feature vector in the shared feature space, a text classifier P that

predicts the label for x given the feature representation F (x), and a language dis-

criminator Q that also takes F (x) but predicts a scalar score indicating whether x

is from SOURCE or TARGET.

An input document is modeled as a sequence of words x = w1, . . . ,wn, where

each w is represented by its word embedding vw (Turian et al., 2010). For im-

proved performance, pre-trained bilingual word embeddings (BWEs, Zou et al.,

2013; Gouws et al., 2015) can be employed to induce bilingual distributed word

representations so that similar words are closer in the embedded space regard-

less of language.
1“Unlabeled” and “labeled” refer to task labels; all texts are assumed to have the correct

language label.
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A parallel corpus is often required to train high-quality BWEs, making LAN

implicitly dependent on the bilingual corpus. However, compared to the MT

systems used in other CLTC methods, training BWEs requires one or two orders

of magnitude less parallel data, and some methods only take minutes to train on

a consumer CPU (Gouws et al., 2015), while state-of-the-art MT systems need

days to weeks for training on multiple GPUs. Moreover, even with randomly

initialized embeddings, LAN can still outperform some baseline methods that

use pre-trained BWEs (Section 3.3.3). Another possibility is to take advantage

of the recent work that trains BWEs with no bilingual supervision (Lample et al.,

2018).

We adopt the Deep Averaging Network (DAN) by Iyyer et al. (2015) for the

feature extractor F . We choose DAN for its simplicity to illustrate the effective-

ness of our language-adversarial training framework, but other architectures

can also be used for the feature extractor (Section 3.3.3). For each document, DAN

takes the arithmetic mean of the word vectors as input, and passes it through

several fully-connected layers until a softmax for classification. In LAN, F first

calculates the average of the word vectors in the input sequence, then passes

the average through a feed-forward network with ReLU nonlinearities. The ac-

tivations of the last layer in F are considered the extracted features for the input

and are then passed on to P and Q. The text classifier P and the language dis-

criminator Q are standard feed-forward networks. P has a softmax layer on top

for text classification and Q ends with a linear layer of output width 1 to assign

a language identification score2.

2Q simply tries to maximize scores for SOURCE texts and minimize for TARGET, and the
scores are not bounded.
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3.2.2 Language-Adversarial Training

Before describing the adversarial training approach employed in LAN, we intro-

duce a pre-existing formulation of its adversarial component in which training

is done using a Gradient Reversal Layer (Ganin et al., 2016). We refer to this

version of LAN as LAN-GRL.

In LAN-GRL, Q is a binary classifier with a sigmoid layer on top so that the

language identification score is always between 0 and 1 and is interpreted as

the probability of whether an input text x is from SOURCE or TARGET given its

hidden features F (x). For training, Q is connected to F via a Gradient Rever-

sal Layer (Ganin and Lempitsky, 2015), which preserves the input during the

a forward pass but multiplies the gradients by −λ during a backward pass. λ

is a hyperparameter that balances the effects that P and Q have on F respec-

tively. This way, the entire network can be trained in its entirety using standard

backpropagation.

Unfortunately, researchers have found that the training of F and Q in LAN-

GRL might not be fully in sync (Ganin and Lempitsky, 2015), and efforts need to

be made to coordinate the adversarial training. This is achieved by setting λ to a

non-zero value only once out of k batches as in practice we observe that F trains

faster than Q. Here, k is another hyperparameter that coordinates the training of

F and Q. When λ = 0, the gradients from Q will not be back-propagated to F .

This allows Qmore iterations to adapt to F before F makes another adversarial

update.

To illustrate the limitations of LAN-GRL and motivate the formal introduc-

tion of our LAN model, consider the distribution of the joint hidden features F
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for both SOURCE and TARGET instances:

Psrc
F
, P(F (x)|x ∈ SOURCE) (3.1)

Ptgt
F
, P(F (x)|x ∈ TARGET) (3.2)

In order to learn language-invariant features, LAN trains F to make these

two distributions as close as possible for better cross-lingual generalization. In

particular, as argued by Arjovsky et al. (2017), previous approaches to training

adversarial networks such as LAN-GRL are equivalent to minimizing the Jensen-

Shannon divergence between two distributions, in our case Psrc
F

and Ptgt
F

. And

because the Jensen-Shannon divergence suffers from discontinuities, providing

less useful gradients for training F , Arjovsky et al. (2017) propose instead to

minimize the Wasserstein distance and demonstrate its improved stability for

hyperparameter selection.

As a result, the LAN training algorithm (see Algorithm 3.1) departs from the

earlier LAN-GRL training method. In LAN, we instead minimize the Wasserstein

distance W between Psrc
F

and Ptgt
F

according to the Kantorovich-Rubinstein dual-

ity (Villani, 2008):

W(Psrc
F
, Ptgt
F

) = sup
‖g‖L≤1

E
f (x)∼Psrc

F

[
g( f (x))

]
− E

f (x′)∼Ptgt
F

[
g( f (x′))

]
(3.3)

where the supremum (maximum) is taken over the set of all 1-Lipschitz3 func-

tions g. In order to (approximately) calculate W(Psrc
F
, Ptgt
F

), we use the language

discriminator Q as the function g in (3.3), whose objective is then to seek the

supremum in (3.3). To make Q a Lipschitz function (up to a constant), the pa-

rameters of Q are always clipped to a fixed range [−c, c]. Let Q be parameterized

3A function g is 1-Lipschitz iff |g(x) − g(y)| ≤ |x − y| for all x and y.
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Require: labeled SOURCE corpus Xsrc; unlabeled TARGET corpus Xtgt; Hyperpamame-
ter λ > 0, k ∈ N, c > 0.

1: repeat
2: . Q iterations
3: for qiter = 1 to k do
4: Sample unlabeled batch xsrc ∼ Xsrc
5: Sample unlabeled batch xtgt ∼ Xtgt
6: f src = F (xsrc)
7: f tgt = F (xtgt) . feature vectors
8: lossq = −Q( f src) + Q( f tgt) . Eqn (3.4)
9: Update Q parameters to minimize lossq

10: ClipWeights(Q,−c, c)
11: . Main iteration
12: Sample labeled batch (xsrc, ysrc) ∼ Xsrc
13: Sample unlabeled batch xtgt ∼ Xtgt
14: f src = F (xsrc)
15: f tgt = F (xtgt)
16: loss = Lp(P( f src); ysrc) + λ(Q( f src) − Q( f tgt)) . Eqn (3.6)
17: Update F , P parameters to minimize loss
18: until convergence

Algorithm 3.1: LAN Training

by θq, then the objective Jq of Q becomes:

Jq(θ f ) ≡max
θq

E
F (x)∼Psrc

F

[Q(F (x))] − E
F (x′)∼Ptgt

F

[
Q(F (x′))

]
(3.4)

Intuitively, Q tries to output higher scores for SOURCE instances and lower

scores for TARGET (as shown in Line 8 of Algorithm 3.1). More formally, Jq

is an approximation of the Wasserstein distance between Psrc
F

and Ptgt
F

in (3.3).

For the text classifier P parameterized by θp, we use the traditional cross-

entropy loss, denoted as Lp(ŷ, y), where ŷ and y are the predicted label distri-

bution and the true label, respectively. Lp is the negative log-likelihood that P

predicts the correct label. We therefore seek the minimum of the following loss

function for P:

Jp(θ f ) ≡ min
θp
E

(x,y)

[
Lp(P(F (x)), y)

]
(3.5)
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Finally, the joint feature extractor F parameterized by θ f strives to minimize

both the text classifier loss Jp and W(Psrc
F
, Ptgt
F

) = Jq:

J f ≡ min
θ f

Jp(θ f ) + λJq(θ f ) (3.6)

where λ is a hyper-parameter that balances the two branches P and Q. (See

Line 16 in Algorithm 3.1.)

As proved by Arjovsky et al. (2017) and observed in our experiments (Sec-

tion 3.3.3), minimizing the Wasserstein distance is much more stable w.r.t. hy-

perparameter selection compared to LAN-GRL, saving the hassle of carefully

varying λ during training (Ganin and Lempitsky, 2015). In addition, LAN-GRL

needs to laboriously coordinate the alternating training of the two competing

components by setting the hyperparameter k, which indicates the number of it-

erations one component is trained before training the other. The performance

can degrade substantially if k is not properly set. In our case, however, delicate

tuning of k is no longer necessary since W(Psrc
F
, Ptgt
F

) is approximated by max-

imizing (3.4); thus, training Q to optimum using a large k can provide better

performance (but is slower to train). In our experiments, we fix λ = 0.1 and

k = 5 for all experiments (train 5 Q iterations per F and P iteration), and the

performance is stable over a large set of hyperparameters (Section 3.3.3).

3.3 Experiments and Discussions

To demonstrate the effectiveness of our model, we experiment on Chinese and

Arabic text classification, using English as the SOURCE for both. For all data

used in experiments, tokenization is done using Stanford CoreNLP (Manning

et al., 2014).

33



3.3.1 Data

Labeled English Data. We use a balanced dataset of 700k Yelp reviews

from Zhang et al. (2015) with their ratings as labels (scale 1-5). We also adopt

their train-validation split: 650k reviews for training and 50k form a validation

set.

Labeled Chinese Data. Since LAN does not require labeled Chinese data for

training, this annotated data is solely used to validate the performance of our

model. 10k balanced Chinese hotel reviews from Lin et al. (2015) are used as val-

idation set for model selection and parameter tuning. The results are reported

on a separate test set of another 10k hotel reviews. For Chinese, the data are

annotated with 5 labels (1-5).

Unlabeled Chinese Data. For the unlabeled TARGET data used in training LAN,

we use another 150k unlabeled Chinese hotel reviews.

English-Chinese Bilingual Word Embeddings. For Chinese, we used the pre-

trained bilingual word embeddings (BWE) by Zou et al. (2013). Their work

provides 50-dimensional embeddings for 100k English words and another set

of 100k Chinese words. See Section 3.3.3 for more experiments and discussions.

Labeled Arabic Data. We use the BBN Arabic dataset (Mohammad et al., 2016)

for Arabic text classification. The dataset contains 1200 sentences (600 valida-

tion + 600 test) from social media posts annotated with 3 labels (−, 0, +). The

dataset also provides machine translated text to English. Since the label set

does not match with the English dataset, we map all the rating 4 and 5 English

instances to + and the rating 1 and 2 instances to −, while the rating 3 sentences

are converted to 0.
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Methodology Approach Accuracy

Chinese Arabic

Train-on-SOURCE-only Logistic Regression 30.58% 45.83%
DAN 29.11% 48.00%

Domain Adaptation mSDA (Chen et al., 2012) 31.44% 48.33%

Machine Translation Logistic Regression + MT 34.01% 51.67%
DAN + MT 39.66% 52.50%

CLD-based CLTC CLD-KCNN† 40.96% 52.67%‡

CLDFA-KCNN† 41.82% 53.83%‡

Ours LAN 42.49%±0.19% 54.54%±0.34%

† Xu and Yang (2017).
‡As Xu and Yang (2017) did not report results for Arabic, these numbers are obtained
based on our reproduction using their code.

Table 3.1: LAN performance for Chinese (5-class) and Arabic (3-class) text classi-
fication without using labeled TARGET data. All systems but the CLD
ones use BWE to map SOURCE and TARGET words into the same space.
CLD-based CLTC represents cross-lingual text classification methods
based on cross-lingual distillation (Xu and Yang, 2017) and is explained
in Section 3.3.2. For LAN, average accuracy and standard errors over
five runs are shown. Bold numbers indicate statistical significance over
all baseline systems with p < 0.05 under a One-Sample T-Test.

Unlabeled Arabic Data. For Arabic, no additional unlabeled data is used. We

only use the text from the validation set (without labels) during training.

English-Arabic Bilingual Word Embeddings. For Arabic, we train a 300d Bil-

BOWA BWE (Gouws et al., 2015) on the United Nations corpus (Ziemski et al.,

2016).

3.3.2 Cross-Lingual Text Classification

Our main results are shown in Table 3.1, which shows very similar trends for

Chinese and Arabic. Before delving into discussions on the performance of LAN

35



compared to various baseline systems in the following paragraphs, we begin by

clarifying the bilingual resources used in all the methods. Note first that in all of

our experiments, traditional features like bag of words cannot be directly used

since SOURCE and TARGET have completely different vocabularies. Therefore,

unless otherwise specified, BWEs are used as the input representation for all

systems to map words from both SOURCE and TARGET into the same feature

space. (The only exceptions are the CLD-based CLTC systems of Xu and Yang

(2017) explained later in this section, which directly make use of a parallel cor-

pus instead of relying on BWEs.) The same BWEs are adopted in all systems

that utilize BWEs.

Train-on-SOURCE-only baselines We start by considering two baselines that

train only on the SOURCE language, English, and rely solely on the BWEs to

classify the TARGET. The first variation uses a standard supervised learning al-

gorithm, Logistic Regression (LR), shown in Row 1 in Table 3.1. In addition, we

evaluate a non-adversarial variation of LAN, just the DAN portion of our model

(Row 2), which is one of the modern neural models for text classification. We

can see from Table 3.1 that, in comparison to LAN (bottom line), the train-on-

SOURCE-only baselines perform poorly. This indicates that BWEs by themselves

do not suffice to transfer knowledge of English text classification to TARGET.

Domain Adaptation baselines We next compare LAN with domain adapta-

tion baselines, since domain adaptation can be viewed as a generalization of

the cross-lingual task. Nonetheless, the divergence between languages is much

more significant than the divergence between two domains, which are typ-

ically two product categories in practice. Among domain adaptation meth-
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ods, the widely-used TCA (Pan et al., 2011) did not work since it required

quadratic space in terms of the number of samples (650k). We thus compare

to mSDA (Chen et al., 2012), a very effective method for cross-domain text clas-

sification on Amazon reviews. However, as shown in Table 3.1 (Row 3), mSDA

did not perform competitively. We speculate that this is because many domain

adaptation models including mSDA were designed for the use of bag-of-words

features, which are ill-suited in our task where the two languages have com-

pletely different vocabularies. In summary, this suggests that even strong do-

main adaptation algorithms cannot be used out of the box with BWEs for the

CLTC task.

Machine Translation baselines We then evaluate LAN against Machine Trans-

lation baselines (Rows 4-5) that (1) translate the TARGET text into English and

then (2) use the better of the train-on-SOURCE-only models for text classifica-

tion. Previous studies (Banea et al., 2008; Salameh et al., 2015) on Arabic and Eu-

ropean languages claim this MT approach to be very competitive and find that

it can sometimes match the state-of-the-art system trained on that language. For

Chinese, where translated text was not provided, we use the commercial Google

Translate engine4, which is highly engineered, trained on enormous resources,

and arguably one of the best MT systems currently available. As shown in Ta-

ble 3.1, our LAN model substantially outperforms the MT baseline on both lan-

guages, indicating that our adversarial model can successfully perform cross-

lingual text classification without any annotated data in the target language.

4https://translate.google.com
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Cross-lingual Text Classification baselines Finally, we conclude LAN’s effec-

tiveness by comparing against a state-of-the-art CLTC method (Xu and Yang,

2017). They propose a cross-lingual distillation (CLD) method that makes use

of soft SOURCE predictions on a parallel corpus to train a TARGET model (CLD-

KCNN). They further propose an improved variant (CLDFA-KCNN) that uti-

lizes adversarial training to bridge the domain gap between the labeled and

unlabeled texts within the source and the target language, similar to the ad-

versarial domain adaptation by Ganin et al. (2016). In other words, CLDFA-

KCNN consists of three conceptual adaptation steps: (i) Domain adaptation

from source-language labeled texts to source-language unlabeled texts using

adversarial training; (ii) Cross-lingual adaptation using distillation; and (iii) Do-

main adaptation in the target language from unlabeled texts to the test set. Note,

however, Xu and Yang (2017) use adversarial training for domain adaptation

within a single language vs. our work that uses adversarial training directly for

cross-lingual generalization.

As shown in Table 3.1, LAN significantly outperforms both variants of CLD-

KCNN and achieves a new state of the art performance, indicating that our

direct use of adversarial neural nets for cross-lingual adaptation can be more

effective than chaining three adaptation steps as in CLDFA-KCNN. This is the

case in spite of the fact that LAN does not explicitly separate language variation

from domain variation. In fact, the monolingual data we use for the source and

target languages is indeed from different domains. LAN’s performance suggests

that it could potentially bridge the divergence introduced by both sources of

variation in one shot.
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Supervised SOURCE accuracy By way of comparison, it is also instructive to

compare LAN’s “transferred” accuracy on the TARGET with its (supervised) per-

formance on the SOURCE. LAN achieves 58.7% accuracy on English for the 5-

class English-Chinese setting, and 75.6% for the 3-class English-Arabic setting.

The SOURCE accuracy for the DAN baselines (Rows 2 and 5) is similar to the

SOURCE accuracy of LAN.

3.3.3 Analysis and Discussion

Since the Arabic dataset is small, we choose Chinese as an example for our fur-

ther analysis.

Semi-supervised Learning

In practice, it is usually not very difficult to obtain at least a small amount of

annotated data. LAN can be readily adapted to exploit such extra labeled data

in the target language, by letting those labeled instances pass through the text

classifier P as the English samples do during training. We simulate this semi-

supervised scenario by adding labeled Chinese reviews for training. We start

by adding 100 labeled reviews and keep doubling the number until 12800. As

shown in Figure 3.2, when adding the same number of labeled reviews, LAN

can better utilize the extra supervision and outperform the DAN baseline trained

with combined data, as well as the supervised DAN using only labeled Chinese

reviews. The margin is naturally decreasing as more supervision is incorpo-

rated, but LAN is still superior when adding 12800 labeled reviews. On the

other hand, the DAN with translation baseline seems unable to effectively uti-
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Figure 3.2: LAN performance and standard deviation for Chinese in the
semi-supervised setting when using various amount of labeled
Chinese data.

lize the added supervision in Chinese, and the performance only starts to show

a slightly increasing trend when adding 6400 or more labeled reviews. One pos-

sible reason is that when adding to the training data a small number of English

reviews translated from the labeled Chinese data, the training signals they pro-

duce might be lost in the vast number of English training samples, and thus

not effective in improving performance. Another potentially interesting find is

that it seems a very small amount of supervision (e.g. 100 labels) could signifi-

cantly help DAN. However, with the same number of labeled reviews, LAN still

outperforms the DAN baseline.

Qualitative Analysis and Visualizations

To qualitatively demonstrate how LAN bridges the distributional discrepancies

between English and Chinese instances, t-SNE (Van der Maaten and Hinton,

2008) visualizations of the activations at various layers are shown in Figure 3.3.

We randomly select 1000 reviews from the Chinese and English validation sets
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I have been here twice and both times have been great. They really have a nice service staff & very Attentive!
Food is pretty good as well! They seem to be always busy but super glad you are there with them. Well done!
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Figure 3.3: t-SNE visualizations of activations at various layers for the
weight sharing (train-on-SOURCE-only) baseline model (top)
and LAN (bottom). The distributions of the two languages are
brought much closer in LAN as they are represented deeper in
the network (left to right) measured by the Averaged Haus-
dorff Distance (see text). The green circles are two 5-star ex-
ample reviews (shown below the figure) that illustrate how the
distribution evolves (zoom in for details).

respectively, and plot the t-SNE of the hidden node activations at three loca-

tions in our model: the averaging layer, the end of the joint feature extractor,

and the last hidden layer in the text classifier just prior to softmax. The train-

on-English model is the DAN baseline in Table 3.1. Note that there is actually

only one “branch” in this baseline model, but in order to compare to LAN, we

conceptually treat the first three layers as the feature extractor.
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Figure 3.3a shows that BWEs alone do not suffice to bridge the gap between

the distributions of the two languages. To shed more light on the surprisingly

clear separation given that individual words have a mixed distribution in both

languages (not shown in figure), we first try to isolate the content divergence

from the language divergence. In particular, the English and Chinese reviews

are not translations of each other, and in fact may even come from different

domains. Therefore, the separation could potentially come from two sources:

the content divergence between the English and Chinese reviews, and the lan-

guage divergence of how words are used in the two languages. To control for

content divergence, we tried plotting (not shown in figure) the average word

embeddings of 1000 random Chinese reviews and their machine translations

into English using t-SNE, and surprisingly the clear separation was still present.

There are a few relatively short reviews that reside close to their translations,

but the majority still form two language islands. (The same trend persists when

we switch to a different set of pre-trained BWEs, and when we plot a similar

graph for English-Arabic.) When we remove stop words (the most frequent

word types in both languages), the two islands finally start to become slightly

closer with less clean boundaries, but the separation remains clear. We think

this phenomenon is interesting, and a thorough investigation is out of the scope

of this work. We hypothesize that at least in certain distant language pairs such

as English-Chinese5, the divergence between languages may not only be deter-

mined by word semantics, but also largely depends on how words are used.

Furthermore, we can see in Figure 3.3b that the distributional discrepancies

between Chinese and English are significantly reduced after passing through

the joint feature extractor (F ). The learned features in LAN bring the distribu-

5In a personal correspondence with Ahmed Elgohary, he did not observe the same phe-
nomenon between English and French.
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tions in the two languages dramatically closer compared to the monolingually

trained baseline. This is shown via the Averaged Hausdorff Distance (AHD,

Shapiro and Blaschko, 2004), which measures the distance between two sets of

points. The AHD between the English and Chinese reviews is provided for all

sub-plots in Figure 3.3.

Finally, when looking at the last hidden layer activations in the text classifier

of the baseline model (Figure 3.3c), there are several notable clusters of red dots

(English data) that roughly correspond to the class labels. These English clus-

ters are the areas where the classifier is the most confident in making decisions.

However, most Chinese samples are not close to one of those clusters due to

the distributional divergence and may thus cause degraded classification per-

formance in Chinese. On the other hand, the Chinese samples are more in line

with the English ones in LAN, which results in the accuracy boost over the base-

line model. In Figure 3.3, a pair of similar English and Chinese 5-star reviews

is highlighted to visualize how the distribution evolves at various points of the

network. We can see in 3.3c that the highlighted Chinese review gets close to

the “positive English cluster” in LAN, while in the baseline, it stays away from

dense English clusters where the text classifier trained on English data is not

confident to make predictions.

Impact of Bilingual Word Embeddings

In this section we discuss the effect of the bilingual word embeddings. We start

by initializing the systems with random word embeddings (WEs), shown in

Table 3.2. LAN with random WEs outperforms the DAN and mSDA baselines

using BWEs and matches the performance of the LR+MT baseline (Table 3.1),
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Model Random BilBOWA Zou et al.

DAN 21.66% 28.75% 29.11%
DAN+MT 37.78% 38.17% 39.66%
LAN 34.44% 40.51% 42.95%

Table 3.2: Model performance on Chinese with various (B)WE initializa-
tions.

suggesting that LAN successfully extracts features that could be used for cross-

lingual classification tasks without any bitext. This impressive result vindicates

the power of adversarial training to reduce the distance between two complex

distributions without any direct supervision, which is also observed in more

recent works for other tasks (Zhang et al., 2017; Lample et al., 2018).

With the introduction of BWEs (Column 2 and 3), the performance of LAN is

further boosted. Therefore, the quality of the BWEs plays an important role in

CLTC. To investigate the impact of the specific choice of BWEs, we also trained

100d BilBOWA BWEs (Gouws et al., 2015) using the UN parallel corpus for

Chinese. All systems achieve slightly lower performance compared to the pre-

trained BWEs from Zou et al. (2013), yet LAN still outperforms other baseline

methods (Table 3.2), demonstrating that LAN’s effectiveness is relatively robust

with respect to the choice of BWEs. We conjecture that all systems show infe-

rior results with BilBOWA, because it does not require word alignments during

training as Zou et al. (2013) do. By only training on a sentence-aligned corpus,

BilBOWA requires less resources and is much faster to train, potentially at the

expense of quality.
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Model Accuracy Run time

DAN 42.95% 0.127 (s/iter)
CNN 46.24% 0.554 (s/iter)
BiLSTM 44.55% 1.292 (s/iter)
BiLSTM + dot attn 46.41% 1.898 (s/iter)

Table 3.3: Performance and speed for various feature extractor architec-
tures on Chinese.

Feature Extractor Architectures

As mentioned in Section 3.2.1, the architecture of LAN’s feature extractor is not

limited to a Deep Averaging Network (DAN), and one can choose different fea-

ture extractors to suit a particular task or dataset. While an extensive study

of alternative architectures is beyond the scope of this work, we in this section

present a brief experiment illustrating that our adversarial framework works

well with other F architectures. In particular, we consider two popular choices:

i) a CNN (Kim, 2014) that has a 1d convolutional layer followed by a single

fully-connected layer to extract a fixed-length vector; and ii) a Bi-LSTM with

two variants: one that takes the average of the hidden outputs of each token

as the feature vector, and one with the dot attention mechanism (Luong et al.,

2015) that learns a weighted linear combination of all hidden outputs.

As shown in Table 3.3, LAN’s performance can be improved by adopting

more sophisticated feature extractors, at the expense of slower running time.

This demonstrates that LAN’s language-adversarial training framework can be

successfully used with other F choices.
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Figure 3.4: A grid search on k and lambda for LAN (right) and the LAN-GRL
variant (left). Numbers indicate the accuracy on the Chinese
development set.

LAN Hyperparameter Stability

In this section, we show that the training of LAN is stable over a large set of hy-

perparameters, and provides improved performance compared to the standard

LAN-GRL.

To verify the superiority of LAN, we conduct a grid search over k and λ, which

are the two hyperparameters shared by LAN and LAN-GRL. We experiment with

k ∈ {1, 2, 4, 8, 16}, and λ ∈ {0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8}. Figure 3.4

reports the accuracy on the Chinese dev set for both LAN variants, and shows

that LAN attains higher accuracy and greater stability. This suggests that LAN

overcomes the well-known problem that adversarial training is sensitive to hy-

perparameter tuning.
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3.3.4 Implementation Details

For all our experiments on both languages, the feature extractor F has three

fully-connected layers with ReLU non-linearities, while both P and Q have two.

All hidden layers contain 900 hidden units. Batch Normalization (Ioffe and

Szegedy, 2015) is used in each hidden layer in P and Q. F does not use batch

normalization. F and P are optimized jointly using Adam (Kingma and Ba,

2015) with a learning rate of 0.0005. Q is trained with another Adam optimizer

with the same learning rate. The weights of Q are clipped to [−0.01, 0.01]. We

train LAN for 30 epochs and use early stopping to select the best model on the

validation set. LAN is implemented in PyTorch (Paszke et al., 2017)6.

3.4 Chapter Summary

In this chapter, we described Language-Adversarial Training, a model-based

method for cross-lingual model transfer using only monolingual data for train-

ing. It learns a language-invariant hidden feature space better suited for cross-

lingual transfer by attempting to fool an adversarially trained language dis-

criminator whose goal is to identify the language of a sample by looking at

its feature vector. We further proposed LAN, a language-adversarial network for

cross-lingual text classification. LAN leverages the abundant labeled data from a

resource-rich source language such as English to help text classification on other

languages where little or no annotated data exist.

We validate LAN’s effectiveness by experiments on Chinese and Arabic text

6The source code of LAN is available at: https://github.com/ccsasuke/adan
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classification, where we have labeled English data and only unlabeled data in

the target language. Experiments show that LAN outperforms several baselines

including domain adaptation models, a competitive MT baseline, and previ-

ous state-of-the-art cross-lingual text classification methods. We further show

that even without any bilingual resources, LAN trained with randomly initial-

ized embeddings can still achieve encouraging performance. In addition, we

show that in the presence of labeled data in the target language, LAN can natu-

rally incorporate this additional supervision and yields even more competitive

results.
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CHAPTER 4

MULTINOMIAL ADVERSARIAL NETWORKS

In the previous chapter, we introduced language-adversarial training that

could learn a language-invariant hidden feature space between two different

languages without parallel training data. Formally speaking, adversarial train-

ing can serve as a tool for minimizing the divergence between two probabilistic

distributions without paired supervision (Nowozin et al., 2016). In this chapter,

we propose the Multinomial Adversarial Network (MAN), a theoretically sound

generalization of standard adversarial networks into a more realistic scenario

that can handle multiple populations (e.g. languages or domains) by leveraging

a multinomial discriminator to directly minimize the divergence among multiple

probability distributions. As the standard binomial adversarial networks have

been successfully applied to numerous tasks including image generation (Good-

fellow et al., 2014), domain adaptation (Ganin et al., 2016) and cross-lingual text

classification (Chen et al., 2016, Chapter 3), we anticipate that MANs will make a

versatile machine learning framework with applications beyond the ones stud-

ied in this chapter.

This chapter is based on Chen and Cardie (2018a).

To isolate the impact of the quality of cross-lingual lexical representation,

we in this chapter focus on the task of domain adaptation (or cross-domain

model transfer) instead of cross-lingual model transfer.1 In particular, we again

focus on the fundamental NLP task in this chapter: text classification. Simi-

lar to the cross-lingual text classification case, text classification also faces the

1The techniques introduced in this chapter can be (and have been) applied to cross-lingual
model transfer when combined with cross-lingual word embeddings as shown in Chapter 5.
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data scarcity problem in the multi-domain setting. In fact, many text classifi-

cation tasks are highly domain-dependent in that a text classifier trained using

labeled data from one domain is likely to perform poorly on another. In the

task of sentiment classification, for example, the phrase “runs fast” is usually

associated with positive sentiment in the sports domain; not so when a user

is reviewing the battery of an electronic device. In real applications, therefore,

an adequate amount of training data from each domain of interest is typically

required, which is expensive to obtain.

Two major lines of work attempt to tackle this challenge: domain adapta-

tion (Blitzer et al., 2007) and multi-domain text classification (MDTC) (Li and

Zong, 2008). In domain adaptation, the assumption is that there is some do-

main with abundant training data (the source domain), and the goal is to utilize

knowledge learned from the source domain to help perform classifications on

another lower-resourced target domain.2 Our focus, MDTC, instead simulates

an arguably more realistic scenario, where labeled data may exist for multiple

domains, but in insufficient amounts to train an effective classifier for one or

more of the domains. Worse still, some domains may have no labeled data at

all. The objective of MDTC is to leverage all the available resources in order to

improve the system performance over all domains simultaneously.

In the rest of this chapter, we first introduce the general Multinomial Ad-

versarial Networks architecture in Section 4.2 and prove in Section 4.3 that it di-

rectly minimizes the (generalized) f-divergence among multiple distributions so

that they are indistinguishable upon successful training. Specifically for MDTC,

MAN is used to overcome a limitation in prior art where domain-specific features

may sneak into the domain-agnostic feature space (Section 4.1). This is accom-

2See Section 4.1 for other variants of domain adaptation.
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plished by relying on MAN’s power of minimizing the divergence among the

feature distributions of each domain. The high-level idea is that MAN will make

the extracted feature distributions of each domain indistinguishable from one

another, thus learning features that are invariant across domains.

We then validate the effectiveness of MAN in experiments on two MDTC data

sets. We find first that MAN significantly outperforms the state-of-the-art CMSC

method (Wu and Huang, 2015) on the widely used multi-domain Amazon re-

view dataset, and does so without relying on external resources such as sen-

timent lexica (Section 4.4.1). When applied to the second dataset, FDU-MTL

(Section 4.4.3), we obtain similar results: MAN achieves substantially higher ac-

curacy than the previous top-performing method, ASP-MTL (Liu et al., 2017).

Finally, while many MDTC methods such as CMSC require labeled data for each

domain, MANs can be applied in cases where no labeled data exists for a subset

of domains. To evaluate MAN in this semi-supervised setting, we compare MAN

to a method that can accommodate unlabeled data for (only) one domain (Zhao

et al., 2018), and show that MAN achieves performance comparable to the state

of the art (Section 4.4.2).

4.1 Related Work

Multi-Domain Text Classification The MDTC task was first examined by Li

and Zong (2008), who proposed to fuse the training data from multiple domains

either at the feature level or the classifier level. One state-of-the-art system for

MDTC, the CMSC system of Wu and Huang (2015), combines a classifier that is

shared across all domains (for learning domain-invariant knowledge) with a set

of classifiers, one per domain, each of which captures domain-specific text clas-
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sification knowledge. This paradigm is sometimes known as the Shared-Private

model (Bousmalis et al., 2016). CMSC, however, lacks an explicit mechanism to

ensure that the shared classifier captures only domain-independent knowledge:

the shared classifier may well also acquire some domain-specific features that

are useful for a subset of the domains. We hypothesize that better performance

can be obtained if this constraint were explicitly enforced.

Domain Adaptation Domain Adaptation attempts to transfer the knowledge

from a source domain to a target one, and the traditional form is the single-

source, single-target (SS,ST) adaptation (Blitzer et al., 2006). Another variant is

the SS,MT adaptation (Yang and Eisenstein, 2015), which tries to simultane-

ously transfer the knowledge to multiple target domains from a single source.

However, it cannot fully take advantage the training data if it comes from mul-

tiple source domains. MS,ST adaptation (Mansour et al., 2009; Zhao et al., 2018)

can deal with multiple source domains but only transfers to a single target do-

main. Therefore, when multiple target domains exist, they need to treat them as

independent tasks, which is more expensive and cannot utilize the additional

unlabeled data in these domains. Finally, MDTC can be viewed as MS,MT

adaptation, which is arguably more general and realistic.

Adversarial Networks The idea of adversarial networks was proposed

by Goodfellow et al. (2014) for image generation, and has been applied to vari-

ous NLP tasks as well (Chen et al., 2016; Yu et al., 2017). Ganin et al. (2016) first

used it for the SS,ST domain adaptation followed by many others. Bousmalis

et al. (2016) utilized adversarial training in a shared-private model for domain

adaptation to learn domain-invariant features, but still focused on the SS,ST
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setting. Finally, the idea of using adversarial nets to discriminate over multiple

distributions was empirically explored by a very recent work (Liu et al., 2017)

under the multi-task learning setting, and can be considered as a special case of

our MAN framework with the NLL domain loss. We in this chapter propose MAN

as a more general framework with alternative architectures for the adversarial

component, and for the first time provide theoretical justifications the multino-

mial adversarial nets. Moreover, Liu et al. (2017) used a LSTM without attention

as their feature extractor, which we found to perform sub-optimal in the exper-

iments. We instead chose Convolutional Neural Nets as our feature extractor

that achieves higher accuracy while running an order of magnitude faster (see

Section 4.4.3).

4.2 Multinomial Adversarial Networks (MAN)

In this chapter, we tackle the text classification problem in the real-world setting

in which texts come from a variety of domains, each with a varying amount of

labeled data. Specifically, assume we have a total of N domains, N1 labeled do-

mains (denoted as ∆L) for which there is some labeled data, and N2 unlabeled

domains (∆U) for which no annotated training instances are available. Denote

∆ = ∆L ∪ ∆U as the collection of all domains, with N = N1 + N2. The goal of this

work, and of MDTC in general, is to improve the overall classification perfor-

mance across all N domains, measured in this paper as the average3 classifica-

tion accuracy across the N domains in ∆.

3In this work, we use macro-average over domains, but MAN can be readily adapted for
micro-average or other (weighted) averaging schemes.
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Forward and backward passes when updating the parameters of Fs, Fd and C
Forward and backward passes when updating the parameters of D

Mini-batch of documents from domain di ∈ Δ

Shared 
Feature Extractor 

Domain 
Feature Extractor 

Text Classifier 
C

Domain 
Discriminator 

D

Class LabelDomain Label

�JD
Fs

JD JC(if di 2 �L)

FdiFs

Figure 4.1: MAN for MDTC. The figure demonstrates the training on a mini-
batch of data from one domain. One training iteration consists
of one such mini-batch training from each domain. The param-
eters of Fs,Fd,C are updated together, and the training flows
are illustrated by the green arrows. The parameters of D are
updated separately, shown in red arrows. Solid lines indicate
forward passes while dotted lines are backward passes. JD

Fs
is

the domain loss for Fs, which is anticorrelated with JD (e.g.
JD
Fs

= −JD). (See Section 4.2 and Section 4.3)

4.2.1 Model Architecture

As shown in Figure 4.1, the Multinomial Adversarial Network (MAN) adopts the

Shared-Private paradigm of Bousmalis et al. (2016) and consists of four compo-

nents: a shared feature extractor Fs, a domain feature extractor Fdi for each labeled

domain di ∈ ∆L, a text classifier C, and a domain discriminator D. The main idea

of MAN is to explicitly model the domain-invariant features that are beneficial to

the main classification task across all domains (i.e. the shared features, extracted
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by Fs), as well as the domain-specific features that mainly contribute to the clas-

sification in its own domain (the domain features, extracted by Fd). Here, the ad-

versarial domain discriminator D has a multinomial output that takes a shared

feature vector and predicts the likelihood of that sample coming from each do-

main. As seen in Figure 4.1, during the training of Fs (green arrows denote the

training flow), Fs aims to confuse D by minimizing JD
Fs

, which is anticorrelated

to JD (detailed in Section 4.2.2), so thatD cannot predict the domain of a sample

given its shared features. The intuition is that if even a strong discriminator D

cannot tell the domain of a sample from the extracted features, those features

Fs learned are essentially domain invariant. By enforcing domain-invariant fea-

tures to be learned by Fs, when trained jointly via backpropagation, the set of

domain feature extractors Fd will each learn domain-specific features beneficial

within its own domain.

The architecture of each component is relatively flexible, and can be decided

by the practitioners to suit their particular classification tasks. For instance, the

feature extractors can adopt the form of Convolutional Neural Nets (CNN), Re-

current Neural Nets (RNN), or a Multi-Layer Perceptron (MLP), depending on

the input data (see Section 4.4). The input of MAN will also be dependent on the

feature extractor choice. The output of a (shared/domain) feature extractor is

a fixed-length vector, which is considered the (shared/domain) hidden features

of some given input text. On the other hand, the outputs of C and D are label

probabilities for class and domain prediction, respectively. For example, both

C and D can be MLPs with a softmax layer on top. In Section 4.3, we provide

alternative architectures for D and their mathematical implications. We now

present a detailed description of the MAN training in Section 4.2.2 as well as the

theoretical grounds in Section 4.3.
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Require: labeled corpus X; unlabeled corpus U; Hyperpamameter λ > 0, k ∈ N
1: repeat
2: .D iterations
3: for diter = 1 to k do
4: lD = 0
5: for all d ∈ ∆ do . For all N domains
6: Sample a mini-batch x ∼ Ud
7: f s = Fs(x) . Shared feature vector
8: lD += JD(D( f s); d) . AccumulateD loss
9: UpdateD parameters using ∇lD

10: . Main iteration
11: loss = 0
12: for all d ∈ ∆L do . For all labeled domains
13: Sample a mini-batch (x, y) ∼ Xd
14: f s = Fs(x)
15: f d = Fd(x) . Domain feature vector
16: loss += JC(C( f s, f d); y) . Compute C loss
17: for all d ∈ ∆ do . For all N domains
18: Sample a mini-batch x ∼ Ud
19: f s = Fs(x)
20: loss += λ · JD

Fs
(D( f s); d) . Domain loss of Fs

21: Update Fs, Fd, C parameters using ∇loss
22: until convergence

Algorithm 4.1: MAN Training

4.2.2 MAN Training

Denote the annotated corpus in a labeled domain di ∈ ∆L as Xi; and (x, y) ∼ Xi is

a sample drawn from the labeled data in domain di, where x is the input and y is

the task label. On the other hand, for any domain di′ ∈ ∆, denote the unlabeled

corpus as Ui′ . Note for the choice of unlabeled data of a labeled domain, one can

use a separate unlabeled corpus or simply use the labeled data (or use both).

In Figure 4.1, the arrows illustrate the training flows of various components.

Due to the adversarial nature of the domain discriminator D, it is trained with

a separate optimizer (red arrows), while the rest of the networks are updated
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with the main optimizer (green arrows). C is only trained on the annotated data

from labeled domains, and it takes as input the concatenation of the shared and

domain feature vectors. At test time, for data from unlabeled domains with no

Fd, the domain features are set to the 0 vector for C’s input. On the contrary, D

only takes the shared features as input, for both labeled and unlabeled domains.

The MAN training procedure is described in Algorithm 4.1.

In Algorithm 4.1, LC and LD are the loss functions of the text classifier C and

the domain discriminatorD, respectively. As mentioned in Section 4.2.1, C has

a so f tmax layer on top for classification. We hence adopt the canonical negative

log-likelihood (NLL) loss:

LC(ŷ, y) = − log P(ŷ = y) (4.1)

where y is the true label and ŷ is the so f tmax predictions. ForD, we consider two

variants of MAN. The first one is to use the NLL loss same as C which suits the

classification task; while another option is to use the Least-Square (L2) loss that

was shown to be able to alleviate the gradient vanishing problem when using

the NLL loss in the adversarial setting (Mao et al., 2017):

LNLL
D (d̂, d) = − log P(d̂ = d) (4.2)

LL2
D (d̂, d) =

N∑
i=1

(d̂i − 1{d=i})2 (4.3)

where d is the domain index of some sample and d̂ is the prediction. Without

loss of generality, we normalize d̂ so that
∑N

i=1 d̂i = 1 and ∀i : d̂i ≥ 0.

Therefore, the objectives of C andD that we are minimizing are:

JC =

N∑
i=1

E
(x,y)∼Xi

[
LC(C(Fs(x),Fd(x)); y)

]
(4.4)

JD =

N∑
i=1

E
x∼Ui

[LD(D(Fs(x)); d)] (4.5)
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For the feature extractors, the training of domain feature extractors is

straightforward, as their sole objective is to help C perform better within their

own domain. Hence, JFd = JC for any domain d. Finally, the shared feature ex-

tractor Fs has two objectives: to help C achieve higher accuracy, and to make the

feature distribution invariant across all domains. It thus leads to the following

bipartite loss:

JFs = JC
Fs

+ λ · JD
Fs

(4.6)

where λ is a hyperparameter balancing the two parts. JD
Fs

is the domain loss of

Fs anticorrelated to JD:

(NLL) JD
Fs

= −JD (4.7)

(L2) JD
Fs

=

N∑
i=1

E
x∼Ui

 N∑
j=1

(
D j (Fs(x)) −

1
N

)2
 (4.8)

If D adopts the NLL loss (4.7), the domain loss is simply −JD. For the L2

loss (4.8), JD
Fs

intuitively translates to pushing D to make random predictions.

See Section 4.3 for theoretical justifications.

4.3 Theoretical Analysis of Multinomial Adversarial Networks

Binomial adversarial nets are known to have theoretical connections to the min-

imization of various f-divergences4 between two distributions (Nowozin et al.,

2016). However, for adversarial training among multiple distributions, no the-

oretical justifications have been provided to our best knowledge.

In this section, we present a theoretical analysis showing the validity of MAN.

4An f-divergence (Ali and Silvey, 1966) is a function that measures the distance between
two probability distributions. For example, KL divergence and Jensen-Shannon divergence are
instances of f-divergence.
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In particular, we show that MAN’s objective is equivalent to minimizing the total

f-divergence between each of the shared feature distributions of the N domains,

and the centroid of the N distributions. The choice of loss function will deter-

mine which specific f-divergence is minimized. Furthermore, with adequate

model capacity, MAN achieves its optimum for either loss function if and only

if all N shared feature distributions are identical, hence learning an invariant

feature space across all domains.

First, consider the distribution of the shared features f for instances in each

domain di ∈ ∆:

Pi(f) , P(f = Fs(x)|x ∈ di) (4.9)

Combining (4.5) with the two loss functions (4.2), (4.3), the objective of D

can be written as:

JNLL
D = −

N∑
i=1

E
f∼Pi

[
logDi(f)

]
(4.10)

JL2
D =

N∑
i=1

E
f∼Pi

 N∑
j=1

(D j(f) − 1{i= j})2

 (4.11)

whereDi(f) is the i-th dimension ofD’s (normalized) output vector, which con-

ceptually corresponds to the probability of D predicting that f is from domain

di

We first derive the optimalD for any fixed Fs.

Lemma 4.1. For any fixed Fs, with either NLL or L2 loss, the optimum domain dis-

criminatorD∗ is:

D∗i (f) =
Pi(f)∑N

j=1 P j(f)
(4.12)
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Proof. Without loss of generality, we normalizeD’s outputs to be on a simplex:

N∑
i=1

Di(f) = 1 (∀f) (4.13)

WhenD adopts the NLL loss, for a fixed Fs, the optimum

D∗ = arg min
D

JD = arg min
D

−

N∑
i=1

E
f∼Pi

[
logDi(f)

]
= arg max

D

N∑
i=1

∫
f
Pi(f) logDi(f)df

= arg max
D

∫
f

N∑
i=1

Pi(f) logDi(f)df

We employ the Lagrangian Multiplier to derive arg maxD
∑N

i=1 Pi(f) logDi(f) un-

der the constraint of (4.13). Let

L(D1, . . . ,DN , λ) =

N∑
i=1

Pi logDi − λ

 N∑
i=1

Di − 1


Let ∇L = 0: 

∇Di

∑N
j=1 P j logD j = λ∇Di

(∑N
j=1D j − 1

)
(∀i)∑N

i=1Di − 1 = 0

Solving the two equations, we have:

D∗i (f) =
Pi(f)∑N

j=1 P j(f)

On the other hand, ifD adopts the L2 loss, for a fixed Fs, the optimum

D∗ = arg min
D

JD = arg min
D

N∑
i=1

E
f∼Pi

[LD(D(f), i)]

= arg min
D

N∑
i=1

∫
f
Pi(f)LD(D(f), i)df

= arg min
D

∫
f

N∑
i=1

Pi(f)
N∑

j=1

(
D j(f) − 1{i= j}

)2
df
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Similar to MAN-NLL, we employ the Lagrangian Multiplier to derive

arg min
D

N∑
i=1

Pi(f)
N∑

j=1

(
D j(f) − 1{i= j}

)2

under the constraint of (4.13). Let ∇L = 0:
2
((∑N

j=1 P j

)
Di − Pi

)
= λ (∀i)∑N

i=1Di − 1 = 0

Solving the two equations, we have λ = 0 and again:

D∗i (f) =
Pi(f)∑N

j=1 P j(f)

�

We then have the following main theorems for the domain loss for Fs:

Theorem 4.1. Let P =
∑N

i=1 Pi

N . WhenD is trained to its optimality, ifD adopts the NLL

loss:

JD
Fs

= −min
θD

JD = −JD∗

= −N log N + N · JSD (P1, P2, . . . , PN)

= −N log N +

N∑
i=1

KL
(
Pi‖P

)

where JSD(·) is the generalized Jensen-Shannon Divergence (Lin, 1991) among

multiple distributions, defined as the average Kullback-Leibler divergence of

each Pi to the centroid P (Aslam and Pavlu, 2007).
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Proof. Substituting the optimal discrminatorD∗ into JD
Fs

:

JD
Fs

= −JD∗ =

N∑
i=1

E
f∼Pi

[
logD∗i (f)

]
=

N∑
i=1

E
f∼Pi

log
Pi(f)∑N

j=1 P j(f)


= −N log N +

N∑
i=1

E
f∼Pi

log
Pi(f)∑N

j=1 P j(f)
+ log N


= −N log N +

N∑
i=1

E
f∼Pi

log
Pi(f)∑N
j=1 P j(f)

N


= −N log N +

N∑
i=1

E
f∼Pi

[
log

Pi(f)

P

]

= −N log N +

N∑
i=1

KL
(
Pi‖P

)
= −N log N + N · JSD (P1, P2, . . . , PN)

�

Theorem 4.2. Let P =
∑N

i=1 Pi

N . When D is trained to its optimality, if D uses the L2

loss:

JD
Fs

=

N∑
i=1

E
f∼Pi

 N∑
j=1

(
D∗j(f) −

1
N

)2


=
1
N

N∑
i=1

χ2
Neyman

(
Pi‖P

)

where χ2
Neyman (·‖·) is the Neyman χ2 divergence (Nielsen and Nock, 2014).
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Proof. SubstitutingD∗ into LD
Fs

:

JD
Fs

=

N∑
i=1

E
f∼Pi

 N∑
j=1

(D∗j(f) −
1
N

)2


=

N∑
i=1

∫
f
Pi

N∑
j=1

(
P j

NP
−

1
N

)2

df

=

∫
f

N∑
i=1

N∑
j=1

Pi

(
P j

NP
−

1
N

)2

df

=
1

N2

N∑
j=1

∫
f

N∑
i=1

Pi

(
P j

P
− 1

)2

df

=
1

N2

N∑
j=1

∫
f
NP

(
P j

P
− 1

)2

df

=
1
N

N∑
j=1

∫
f

(
P j − P

)2

P
df

=
1
N

N∑
i=1

χ2
Neyman

(
Pi‖P

)
�

Given the Theorem 4.1 and 4.2, by the non-negativity and joint convexity of

the f-divergence (Csiszar and Korner, 1982), we have:

Corollary 4.1. The optimum of JD
Fs

is −N log N when using NLL loss, and 0 for the L2

loss. The optimum value above is achieved if and only if P1 = P2 = · · · = PN = P for

either loss.

Therefore, the loss of Fs can be interpreted as simultaneously minimizing the

classification loss JC as well as the divergence among feature distributions of all

domains. It can thus learn a shared feature mapping that is invariant across do-

mains upon successful training while being beneficial to the main classification

task.
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Book DVD Elec. Kit. Avg.

Domain-Specific Models Only

LS 77.80 77.88 81.63 84.33 80.41
SVM 78.56 78.66 83.03 84.74 81.25
LR 79.73 80.14 84.54 86.10 82.63
MLP 81.70 81.65 85.45 85.95 83.69

Shared Model Only

LS 78.40 79.76 84.67 85.73 82.14
SVM 79.16 80.97 85.15 86.06 82.83
LR 80.05 81.88 85.19 86.56 83.42
MLP 82.40 82.15 85.90 88.20 84.66
MAN-L2-MLP 82.05 83.45 86.45 88.85 85.20
MAN-NLL-MLP 81.85 83.10 85.75 89.10 84.95

Shared-Private Models

RMTL1 81.33 82.18 85.49 87.02 84.01
MTLGraph2 79.66 81.84 83.69 87.06 83.06
CMSC-LS3 82.10 82.40 86.12 87.56 84.55
CMSC-SVM3 82.26 83.48 86.76 88.20 85.18
CMSC-LR3 81.81 83.73 86.67 88.23 85.11
SP-MLP 82.00 84.05 86.85 87.30 85.05

MAN-L2-SP-MLP 82.46
(±0.25)

83.98
(±0.17)

87.22*
(±0.04)

88.53
(±0.19)

85.55*
(±0.07)

MAN-NLL-SP-MLP 82.98*
(±0.28)

84.03
(±0.16)

87.06
(±0.23)

88.57*
(±0.15)

85.66*
(±0.14)

1 Evgeniou and Pontil (2004) 2 Zhou et al. (2011)
3 Wu and Huang (2015)

Table 4.1: MDTC results on the Amazon dataset. Models in bold are ours
while the performance of the rest are taken from Wu and Huang
(2015). Numbers in parentheses indicate standard errors, calcu-
lated based on 5 runs. Bold numbers indicate the highest per-
formance in each domain, and ∗ shows statistical significance
(p < 0.05) over CMSC under a one-sample T-Test.
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4.4 Experiments

4.4.1 Multi-Domain Text Classification

In this experiment, we compare MAN to state-of-the-art MDTC systems on the

multi-domain Amazon review dataset (Blitzer et al., 2007), which is one of the

most widely used MDTC datasets. Note that this dataset was already prepro-

cessed into a bag of features (unigrams and bigrams), losing all word order

information. This prohibits the use of CNNs or RNNs as feature extractors, lim-

iting the potential performance of the system. Nonetheless, we adopt the same

dataset for fair comparison and employ a MLP as our feature extractor. In par-

ticular, we take the 5000 most frequent features and represent each review as a

5000d feature vector, where feature values are raw counts of the features. Our

MLP feature extractor would then have an input size of 5000 in order to process

the reviews.

The Amazon dataset contains 2000 samples for each of the four domains:

book, DVD, electronics, and kitchen, with binary labels (positive, negative). Fol-

lowing Wu and Huang (2015), we conduct 5-way cross validation. Three out

of the five folds are treated as the training set, one serves as the validation set,

while the remaining is the test set. The 5-fold average test accuracy is reported.

Table 4.1 shows the main results. Three types of models are shown: Domain-

Specific Models Only, where only in-domain models are trained5; Shared Model

Only, where a single model is trained with all data; and Shared-Private Models,

a combination of the previous two. Within each category, various architectures

5For our models, it means Fs is disabled. Similarly, for Shared Model Only, no Fd is used.
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are examined, such as Least Square (LS), SVM, and Logistic Regression (LR).

As explained before, we use MLP as our feature extractors for all our models

(bold ones). Among our models, the ones with the MAN prefix use adversarial

training, and MAN-L2 and MAN-NLL indicate MAN with the L2 loss and the NLL

loss, respectively.

From Table 4.1, we can see that by adopting modern deep neural networks,

our methods achieve superior performance within the first two model cate-

gories even without adversarial training. This is corroborated by the fact that

our SP-MLP model performs comparably to CMSC, while the latter relies on

external resources such as sentiment lexica. Moreover, when our multinomial

adversarial nets are introduced, further improvement is observed. With both

loss functions, MAN outperforms all Shared-Private baseline systems on each

domain, and achieves statistically significantly higher overall performance. For

our MAN-SP models, we provide the mean accuracy as well as the standard er-

rors over five runs, to illustrate the performance variance and conduct signifi-

cance tests. It can be seen that MAN’s performance is relatively stable, and con-

sistently outperforms CMSC.

4.4.2 Experiments for Unlabeled Domains

As CMSC requires labeled data for each domain, their experiments were natu-

rally designed this way. In reality, however, many domains may not have any

annotated corpora available. It is therefore also important to look at the per-

formance in these unlabeled domains for a MDTC system. Fortunately, as de-

picted before, MAN’s adversarial training only utilizes unlabeled data from each
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domain to learn the domain-invariant features, and can thus be used on unla-

beled domains as well. During testing, only the shared feature vector is fed into

C, while the domain feature vector is set to 0.

In order to validate MAN’s effectiveness, we compare to state-of-the-art multi-

source domain adaptation (MS-DA) methods (see Section 4.1). Compared to stan-

dard domain adaptation methods with one source and one target domain, MS-

DA allows the adaptation from multiple source domains to a single target do-

main. Analogically, MDTC can be viewed as multi-source multi-target domain

adaptation, which is superior when multiple target domains exist. With multi-

ple target domains, MS-DA will need to treat each one as an independent task,

which is more expensive and cannot utilize the unlabeled data in other target

domains.

In this work, we compare MAN with one recent MS-DA method,

MDAN (Zhao et al., 2018). Their experiments only have one target domain to

suit their approach, and we follow this setting for fair comparison. However, it

is worth noting that MAN is designed for the MDTC setting, and can deal with

multiple target domains at the same time, which can potentially improve the

performance by taking advantage of more unlabeled data from multiple target

domains during adversarial training. We adopt the same setting as Zhao et al.

(2018), which is based on the same multi-domain Amazon review dataset. Each

of the four domains in the dataset is treated as the target domain in four separate

experiments, while the remaining three are used as source domains.

In Table 4.2, the target domain is shown on top, and the test set accuracy is re-

ported for various systems. It shows that MAN outperforms several baseline sys-

tems, such as a MLP trained on the source-domains, as well as single-source do-
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Target Domain Book DVD Elec. Kit. Avg.

MLP 76.55 75.88 84.60 85.45 80.46
mSDA1 76.98 78.61 81.98 84.26 80.46
DANN2 77.89 78.86 84.91 86.39 82.01
MDAN (H-MAX)3 78.45 77.97 84.83 85.80 81.76
MDAN (S-MAX)3 78.63 80.65 85.34 86.26 82.72
MAN-L2-SP-MLP 78.45 81.57 83.37 85.57 82.24
MAN-NLL-SP-MLP 77.78 82.74 83.75 86.41 82.67

1 Chen et al. (2012) 2 Ganin et al. (2016)
3 Zhao et al. (2018)

Table 4.2: Results on unlabeled domains. Models in bold are our models
while the rest are taken from Zhao et al. (2018). Highest domain
performance is shown in bold.

main adaptation methods such as mSDA (Chen et al., 2012) and DANN (Ganin

et al., 2016), where the training data in the multiple source domains are com-

bined and viewed as a single domain. Finally, when compared to MDAN, MAN

and MDAN each achieves higher accuracy on two out of the four target do-

mains, and the average accuracy of MAN is similar to MDAN. Therefore, MAN

achieves competitive performance for the domains without annotated corpus.

Nevertheless, unlike MS-DA methods, MAN can handle multiple target domains

at one time.

4.4.3 Experiments on the MTL Dataset

To make fair comparisons, the previous experiments follow the standard set-

tings in the literature, where the widely adopted Amazon review dataset is

used. However, this dataset has a few limitations. First, it has only four do-

mains. In addition, the reviews are already tokenized and converted to a bag

of features consisting of unigrams and bigrams. Raw review texts are hence not
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available in this dataset, making it impossible to use certain modern neural ar-

chitectures such as CNNs and RNNs. To provide more insights on how well

MAN works with other feature extractor architectures, we provide a third set of

experiments on the FDU-MTL dataset (Liu et al., 2017). This dataset is created

as a multi-task learning dataset with 16 tasks, where each task is essentially a dif-

ferent domain of reviews. It has 14 Amazon domains: books, electronics, DVD,

kitchen, apparel, camera, health, music, toys, video, baby, magazine, software,

and sports, in addition to two movie review domains from the IMDb and the

MR datasets. Each domain has a development set of 200 samples, and a test set

of 400 samples. The amount of training and unlabeled data vary across domains

but are roughly 1400 and 2000, respectively.

We compare MAN with ASP-MTL (Liu et al., 2017) on this FDU-MTL dataset.

ASP-MTL also adopts adversarial training for learning a shared feature space,

and can be viewed as a special case of MAN that adopts the NLL loss (MAN-NLL)

and chooses LSTM as their feature extractor. In contrast, we found a CNN-based

feature extractor (Kim, 2014) achieves much better accuracy while being ∼ 10

times faster. Indeed, as shown in Table 4.3, with or without adversarial training,

our CNN models outperform LSTM ones by a large margin. When used in our

MAN framework, we attain the state-of-the-art performance on every domain

with a 88.4% overall accuracy, surpassing ASP-MTL by a significant margin of

2.3%.

We hypothesize the reason a LSTM performs much worse than a CNN is its

lack of an attention mechanism. In ASP-MTL, only the last hidden unit is taken

as the extracted features. While LSTMs are effective for representing the context

for each token, it might not be powerful enough for directly encoding the en-
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tire document (Bahdanau et al., 2015). Therefore, various attention mechanisms

have been introduced on top of the vanilla LSTM to select words (and contexts)

most relevant for making the predictions. In our preliminary experiments, we

find that a Bi-directional LSTM with the dot-product attention (Luong et al.,

2015) yields better performance than the vanilla LSTM in ASP-MTL. However,

it still does not outperform CNN and is much slower. As a result, we conclude

that, for text classification tasks, CNN is both effective and efficient in extracting

local and higher-level features for making a single categorization.

Finally, we observe that MAN-NLL achieves slightly higher overall perfor-

mance compared to MAN-L2, providing evidence for the claim in a recent

study (Lucic et al., 2018) that the original GAN loss (NLL) may not be inherently

inferior to the L2 loss. Moreover, the two variants excel in different domains,

suggesting the possibility of further performance gain when using ensembled

models.

4.4.4 Implementation Details

For all three of our experiments, we use λ = 0.05 and k = 5 (See Algorithm 4.1).

For both optimizers, Adam (Kingma and Ba, 2015) is used with learning rate

0.0001. The size of the shared feature vector is set to 128 while that of the domain

feature vector is 64. Dropout of p = 0.4 is used in all components. C andD each

has one hidden layer of the same size as their input (128 + 64 for C and 128

for D). ReLU is used as the activation function. Batch normalization (Ioffe and

Szegedy, 2015) is used in both C andD but not F . We use a batch size of 8.

For our first two experiments on the Amazon review dataset, the MLP fea-
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ture extractor is used. As described in Section 4.4.1, it has an input size of 5000.

Two hidden layers are used, with size 1000 and 500, respectively.

For the CNN feature extractor used in the FDU-MTL experiment, a single

convolution layer is used. The kernel sizes are 3, 4, and 5, and the number of ker-

nels are 200. The convolution layers take as input the 100d word embeddings of

each word in the input sequence. We use word2vec word embeddings (Mikolov

et al., 2013a) trained on a bunch of unlabeled raw Amazon reviews (Blitzer et al.,

2007). After convolution, the outputs go through a ReLU layer before fed into a

max pooling layer. The pooled output is then fed into a single fully connected

layer to be converted into a feature vector of size either 128 or 64. More details

of using CNN for text classification can be found in the original paper (Kim,

2014). MAN is implemented using PyTorch (Paszke et al., 2017)6.

4.5 Chapter Summary

In this chapter, we propose a family of Multinomial Adversarial Networks

(MANs) that generalize the traditional binomial adversarial nets (as seen in Chap-

ter 3) in the sense that MAN can simultaneously minimize the difference among

multiple probability distributions instead of just two. We provide theoretical

justifications for two instances of MAN, MAN-NLL and MAN-L2, showing they are

minimizers of two different f-divergence metrics among multiple distributions,

respectively. This indicates MAN can be used to make multiple distributions in-

distinguishable from one another. It can hence be applied to a variety of tasks,

similar to the versatile binomial adversarial nets, which have been used in many

6The source code of MAN is available at https://github.com/ccsasuke/man.
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areas for making two distributions alike.

In particular, we further devise a MAN model for the multi-domain task clas-

sification (MDTC) task, following the shared-private paradigm that has a shared

feature extractor to learn domain-invariant features and domain feature ex-

tractors to learn domain-specific ones. MAN is used to enforce the shared fea-

ture extractor to learn only domain-invariant knowledge, by resorting to MAN’s

power of making indistinguishable the shared feature distributions of samples

from each domain. We conduct extensive experiments, demonstrating our MAN

model outperforms the prior art systems in MDTC, and achieves state-of-the-art

performance on domains without labeled data when compared to multi-source

domain adaptation methods.
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CHAPTER 5

MULTILINGUAL MODEL TRANSFER: LEARNING WHAT TO SHARE

In Chapter 4, we proposed multinomial adversarial networks (MANs) that

could serve as a tool to minimize divergence among multiple probability dis-

tributions. In the context of cross-lingual transfer learning (CLTL), it can be

viewed as a generalization of language-adversarial training (Chapter 3) for tack-

ling the multilingual transfer learning (MLTL) setting.

As mentioned in Section 2.1.3, the MLTL setting, also known as the multi-

source CLTL setting, tackles the case where labeled training data (type 0 super-

vision) is available in multiple source languages, and we would like to be able

to utilize all of them when transferring to other low-resource target languages.

Previous work (McDonald et al., 2011) indeed showed that transferring from

multiple source languages could result in significant performance improvement

compared to transferring from a single source language as in the bilingual trans-

fer (BLTL) case.

As shown in Section 4.4.2, MAN can be applied to this multi-source transfer

learning setting where we have multiple “labeled” source languages and the

goal is to improve the performance of an “unlabeled” target language1. In the

MLTL setting, however, where multiple source languages exist, MAN will only

use, for model transfer, the features that are common among all source lan-

guages and the target, which may be too restrictive in many cases. For example,

when transferring from English, Spanish and Chinese to German, MAN will re-

tain only features that are invariant across all four languages, which can be too

1Again, although we were focusing on “domains” rather than “languages” in Chapter 4,
MAN can be readily applied to CLTL when coupled with cross-lingual word embeddings (See
experiments in Section 5.3).
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sparse to be informative. Furthermore, the fact that German is more similar to

English than to Chinese is neglected because the transferred model is unable to

utilize features that are shared only between English and German.

To address these shortcomings, we propose a new MLTL model that not only

exploits language-invariant features, but also allows the target language to dy-

namically and selectively leverage language-specific features through a prob-

abilistic attention-style mixture of experts mechanism (see Section 5.2). This

allows our model to learn effectively what to share between various languages.

Another contribution is that, when combined with the recent unsupervised

cross-lingual word embeddings (Lample et al., 2018; Chen and Cardie, 2018b),

our model is able to operate in a zero-resource setting where neither task-specific

target language annotations (type I supervision) nor general-purpose cross-lingual

resources (type II supervision) are available. This is an advantage over many ex-

isting CLTL works, making our model more widely applicable to many lower-

resource languages.

We evaluate our model on multiple MLTL tasks ranging from text classifica-

tion to named entity recognition and semantic slot filling, including a real-world

industry dataset. Our model beats all baseline models trained, like ours, with-

out type II supervision. More strikingly, in many cases, it can match or even

outperform state-of-the-art models that have access to strong type II supervi-

sion (e.g. commercial Machine Translation systems).
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This chapter is based on Chen et al. (2018a).

5.1 Related Work

The diversity of human languages is a critical challenge for natural language

processing. In order to alleviate the need for obtaining annotated data for each

task in each language, cross-lingual transfer learning (CLTL) has long been stud-

ied (Yarowsky et al., 2001; Bel et al., 2003, inter alia).

For unsupervised CLTL in particular, where no target language training data

is available, most prior research investigates the bilingual transfer setting. Tra-

ditionally, research focuses on resource-based methods, where general-purpose

cross-lingual resources such as MT systems or parallel corpora are utilized to

replace task-specific annotated data (Wan, 2009; Prettenhofer and Stein, 2010).

With the advent of deep learning, especially adversarial neural networks (Good-

fellow et al., 2014; Ganin et al., 2016), progress has been made towards model-

based CLTL methods. We (Chen et al., 2016, Chapter 3) proposed language-

adversarial training that did not directly depend on parallel corpora, but instead

only required a set of bilingual word embeddings (BWEs).

On the other hand, the multilingual transfer setting, although less explored,

has also been studied (McDonald et al., 2011; Hajmohammadi et al., 2014; Guo

et al., 2016), showing improved performance compared to using labeled data

from one source language as in bilingual transfer.

Another important direction for CLTL is to learn cross-lingual word repre-

sentations (Klementiev et al., 2012; Zou et al., 2013; Mikolov et al., 2013b). Re-

cently, there have been several notable work for learning fully unsupervised
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cross-lingual word embeddings, both for the bilingual (Zhang et al., 2017; Lam-

ple et al., 2018; Artetxe et al., 2018) and multilingual case (Chen and Cardie,

2018b). These efforts pave the road for performing CLTL without cross-lingual

resources.

Finally, a related field to MLTL is multi-source domain adaptation (Zhao

et al., 2018), where most prior work relies on the learning of domain-invariant

features (Zhao et al., 2018; Chen and Cardie, 2018a). A very recent work (Guo

et al., 2018) attempts to model the relation between the target domain and each

source domain. Our model combines the strengths of prior art and is able to

simultaneously utilize both the domain-invariant and domain-specific features

in a coherent way.

5.2 The MAN-MoE Model

As we have seen in Chapter 4, one commonly adopted paradigm for neural

cross-lingual transfer is the shared-private model (Bousmalis et al., 2016), where

the features are divided into two parts: shared (language-invariant) features

and private (language-specific) features. The shared features are enforced to be

language-invariant via language-adversarial training, by attempting to fool a

language discriminator. Furthermore, we in Chapter 4 propose a generalized

shared-private model for the multi-source setting, where a multinomial adver-

sarial network (MAN) is adopted to extract common features shared by all source

languages as well as the target. On the other hand, the private features are

learned by separate feature extractors, one for each source language, capturing

the remaining features outside the shared ones. During training, the labeled
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Figure 5.1: An overview of the MAN-MoE model.

samples from a certain source language go through the corresponding private

feature extractor for that particular language. At test time, there is no private

feature extractor for the target language; only the shared features are used for

cross-lingual transfer.

As mentioned in the beginning of this chapter, using only the shared features

for MLTL as in the MAN model imposes an overly strong constraint and many

useful features may be wiped out by adversarial training if they are shared only

between the target language and a subset of source languages. Therefore, we

propose to use a mixture-of-experts (MoE) model (Shazeer et al., 2017; Gu et al.,
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2018) to learn the private features. The idea is to have a set of language ex-

pert networks, one per source language, each responsible for learning language-

specific features for that source language during training. However, instead of

hard-switching between the experts, each sample uses a convex combination of

all experts, dictated by an expert gate. Thus, at test time, the trained expert gate

can decide the optimal expert weights for the unseen target language based on

its similarity to the source languages.

Figure 5.1 shows an overview of our full MAN-MoE model for multilingual

model transfer. The boxes illustrate various components of the MAN-MoE model

(Section 5.2.1), while the arrows depict the training flow (Section 5.2.2).

5.2.1 Model Architecture

Figure 5.1 portrays an abstract view of the MAN-MoE model with four major

components: the Multilingual Word Representation, the Shared Feature Extrac-

tor Fs (together with the Language Discriminator D), the MoE Private Feature

Extractor Fp, and finally the MoE Predictor C. Based on the actual task (e.g. se-

quence tagging, text classification, sequence to sequence, etc.), different archi-

tectures may be adopted, as explained below.

Multilingual Word Representation embeds words from all languages into a

single semantic space so that words with similar meanings are close to each

other regardless of language. In this work, we mainly rely on the MUSE em-

beddings (Lample et al., 2018), which are trained in a fully unsupervised man-

ner. We map all other languages into English to obtain a multilingual embed-

ding space. However, in certain experiments, MUSE yields 0 accuracy on one
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or more language pairs (Søgaard et al., 2018), in which case the VecMap em-

beddings (Artetxe et al., 2017) are used. It uses identical strings as supervision,

which does not require parallel corpus or human annotations. We further exper-

iment with our recent unsupervised multilingual word embeddings (Chen and

Cardie, 2018b, Chapter 6), which gives improved performance (Section 5.3.2).

In addition, for tasks where morphological features are important, one can

add character-level word embeddings (Dos Santos and Zadrozny, 2014) that

captures sub-word information. When character embeddings are used, we add

a single CharCNN that is shared across all languages, and the final word rep-

resentation is the concatenation of the word embedding and the char-level em-

bedding. The CharCNN can then be trained end to end with the rest of the

model.

MAN Shared Feature Extractor Fs is a multinomial adversarial network, which

is an adversarial pair of a feature extractor (e.g. LSTM or CNN) and a language

discriminator D. D is a text classifier (Kim, 2014) that takes the shared features

(extracted by Fs) of an input sequence and predicts which language it comes

from. On the other hand, Fs strives to fool D so that it cannot identify the lan-

guage of a sample. The hypothesis is that if D cannot recognize the language

of the input, the shared features then do not contain language information and

are hence language-invariant. Note thatD is trained only using unlabeled texts,

and can therefore be trained on all languages including the target language.

MoE Private Feature Extractor Fp is a key difference from Chapter 4, shown

in Figure 5.2. The figure shows the Mixture-of-Experts (Shazeer et al., 2017)

model with three source languages, English, German and Spanish. Fp has a

shared BiLSTM at the bottom that extracts contextualized word representations
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Figure 5.2: The MoE Private Feature Extractor Fp.

for each token w in the input sentence. The LSTM hidden representation hw

is then fed into the MoE module, where each source language has a separate

expert network (a MLP). In addition, the expert gate G is a linear transformation

that takes hw as input and outputs a softmax score αi for each expert. The final

private feature vector is a mixture of all expert outputs, dictated by the expert

gate weights α.

During training, the expert gate is trained to predict the language of a sam-

ple using the gate loss Jg, where the expert gate output α is treated as the soft-

max probability of the predicted languages. In other words, the more accurate

the language prediction is, the more the correct expert gets used. Therefore,

Jg is used to encourage samples from a certain source language to use the cor-

rect expert (see Section 5.2.2 for more details), and each expert is hence learning

language-specific features for that language. At test time, the trained expert gate
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Figure 5.3: The MoE Predictor C for Sequence Tagging.

will examine the hidden representation of a token, and predicts the optimal ex-

pert weights α. For instance, if a sample is similar to the EN training samples,

the trained gate will predict a higher α for the EN expert, resulting in a heavier

use of it in the final feature vector. Therefore, even for the unseen target lan-

guage, Fp is able to dynamically determine what knowledge to use from each

individual source language at a token level.

MoE Task-Specific Predictor C is the final module that make predictions for the

end task, and may take different forms depending on the task. For instance,

Figure 5.3 shows the MoE predictor for sequence tagging, where one output la-

bel is predicted for each input token. The shared and private features are first

concatenated for each token, and then past through a MoE module similar to Fp.

It is straightforward to adapt C to work for other tasks. For example, for text

classification, a pooling layer such as dot-product attention (Luong et al., 2015)

is added at the bottom to fuse token-level features into a single sentence feature
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vector.

C first concatenates the shared and private features to form a single feature

vector for each token. It then has another MoE module that outputs a softmax

probability over all labels for each token. The idea is that it may be favorable

to put different weights between the language-invariant and language-specific

features for different target languages. Again consider the example of English,

German, Spanish and Chinese. When transferring to Chinese from the other

three, the source languages are similar to each other while all being rather dis-

tant from Chinese. Therefore, the adversarially learned shared features might

be more important in this case. On the other hand, when transferring to Ger-

man, which is much more similar to English than to Chinese, we might want

to pay more attention to the MoE private features. Therefore, we adopt a MoE

module in C, which provides more flexibility than using a single MLP2.

5.2.2 Model Training

Denote the set of all N source languages as S, where |S| = N. Denote the tar-

get language as T , and let ∆ = S ∪ T be the set of all languages. Denote the

annotated corpus for a source language l ∈ S as Xl, where (x, y) ∼ Xl is a sam-

ple drawn from Xl. In addition, unlabeled data is required for all languages to

facilitate the MAN training. We hence denote as Ul′ the unlabeled texts from a

language l′ ∈ ∆.

The overall training flow of various components is illustrated in Figure 5.1,

while the training algorithm is depicted in Algorithm 5.1. Similar to MAN, there
2We also experimented with an attention mechanism between the shared and private fea-

tures, or a gating mechanism to modulate each feature channel, but got sub-optimal results.
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Require: labeled corpus X; unlabeled corpus U; Hyperpamameter λ1, λ2 > 0, k ∈ N
1: repeat
2: .D iterations
3: for diter = 1 to k do
4: lD = 0
5: for all l ∈ ∆ do . For all languages
6: Sample a mini-batch x ∼ Ul
7: f s = Fs(x) . Shared features
8: lD += LD(D( f s); l) .D loss
9: UpdateD parameters using ∇lD

10: . Main iteration
11: loss = 0
12: for all l ∈ S do . For all source languages
13: Sample a mini-batch (x, y) ∼ Xl
14: f s = Fs(x) . Shared features
15: f p, g1 = Fp(x) . Private features and gate outputs
16: ŷ, g2 = C( f s, f p)
17: loss += LC(ŷ; y) + λ2(Lg(g1; l) + Lg(g2; l)) . C loss and gate loss
18: for all l ∈ ∆ do . For all languages
19: Sample a mini-batch x ∼ Ul
20: f s = Fs(x) . Shared features
21: loss += −λ1 · LD(D( f s); l) . Language loss to confuseD
22: Update Fs, Fp, C parameters using ∇loss
23: until convergence

Algorithm 5.1: MAN-MoE Training

are two separate optimizers to train MAN-MoE, one updating the parameters of

D (red arrows), while the other updating the parameters of all other modules

(green arrows). In Algorithm 5.1, LC, LD and Lg are the loss functions for the

predictor C, the language discriminator D, and the expert gates in Fp and C,

respectively.

In practice, we adopt the NLL loss for LC for text classification, and token-

level NLL loss for sequence tagging:

LNLL(ŷ; y) = − log P(ŷ = y) (5.1)

LT -NLL(ŷ; y) = − log P(ŷ = y) = −
∑

i

log P(ŷi = yi) (5.2)
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where y is a scalar class label, and y is a vector of token labels. LC is hence

interpreted as the negative log-likelihood of predicting the correct task label.

Similarly, D adopts the NLL loss in (5.1) for predicting the correct language of

a sample. Finally, the expert gates G use token-level NLL loss in (5.2), which

translates to the negative log-likelihood of using the correct language expert for

each token in a sample.

Therefore, the objectives that C,D and Gminimize are, respectively:

JC =
∑
l∈S

E
(x,y)∈Xl

[
LC(C(Fs(x),Fp(x)); y)

]
(5.3)

JD =
∑
l∈∆

E
x∈Ul

[LD(D(Fs(x)); l)] (5.4)

JG =
∑
l∈S

E
x∈Xl

∑
w∈x

LG(G(hw); l)

 (5.5)

where hw in (5.5) is the BiLSTM hidden representation in Fp as shown in Fig-

ure 5.2. In addition, note that D is trained using unlabeled corpora over all

languages (∆), while the training of Fp and C (and hence G) only take place on

source languages (S). Finally, the overall objective function is:

J = JC − λ1JD + λ2(J(1)
G

+ J(2)
G

) (5.6)

where J(1)
G

and J(2)
G

are the two expert gates in Fp and C, respectively.

5.3 Experiments and Discussions

In this section, we present an extensive set of experiments across three datasets.

The first experiment is on a real-world multilingual slot filling (sequence tag-

ging) dataset, where the data is used in a commercial personal virtual assis-

tant. In addition, we conduct experiments on two public academic datasets,
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namely the CoNLL multilingual named entity recognition (sequence tagging)

dataset (Sang, 2002; Sang and Meulder, 2003), and the Multilingual Amazon

Reviews (text classification) dataset (Prettenhofer and Stein, 2010).

5.3.1 Cross-Lingual Semantic Slot Filling

As shown in Table 5.1, we collect data for four languages: English, German,

Spanish, and Chinese, over three domains: Navigation, Calendar, and Files.

Each domain has a set of pre-determined slots (the slots are the same across

languages), and the user utterances in each language and domain are annotated

by crowd workers with the correct slots (see the examples in Table 5.1). We

employ the standard BIO tagging scheme to formulate the slot filling problem

as a sequence tagging task.

For each domain and language, the data is divided into a training, a valida-

tion, and a test set, with the number of samples in each split shown in Table 5.1.

In our experiments, we treat each domain as a separate experiment, and con-

sider each of German, Spanish and Chinese as the target language while the

remaining three being source languages, which results in a total of 9 experi-

ments.

Results

In Table 5.2, we report the performance of MAN-MoE compared to a number

of baseline systems. All systems adopt the same base architecture, which is a

multi-layer BiLSTM sequence tagger (İrsoy and Cardie, 2014) with a token-level
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MLP on top (no CRFs were used).

MT baselines employ machine translation (MT) for cross-lingual transfer. In

particular, the train-on-trans(lation) method translates the entire English training

set into each target language which are in turn used to train a supervised system

on the target language. On the other hand, the test-on-trans(lation) method trains

an English sequence tagger, and utilizes MT to translate the test set of each target

language into English in order to make predictions. In this work, we adopt

the Microsoft Translator3, a strong commercial MT system. Note that for a MT

system to work for sequence tagging tasks, word alignment information must

be available, in order to project word-level annotations across languages. This

rules out many MT systems such as Google Translate since they do not provide

word alignment information through their APIs.

BWE baselines rely on Bilingual Word Embeddings (BWEs) and weight sharing

for CLTL. Namely, the sequence tagger trained on the source language(s) are

directly applied to the target language, in hopes that the BWEs could bridge

the language gap. This simple method has been shown to yield strong results

in recent work (Upadhyay et al., 2018). The MUSE (Lample et al., 2018) BWEs

are used by all systems in this experiment. 1-to-1 indicates that we are only

transferring from English, while 3-to-1 means the training data from all other

three languages are leveraged.4

The final baseline is the MAN model, presented before our MAN-MoE ap-

proach. As shown in Table 5.2, MAN-MoE substantially outperforms all baseline

systems that do not employ cross-lingual supervision on almost all domains

and languages. Another interesting observation is that MAN performs strongly

3https://azure.microsoft.com/en-us/services/cognitive-services/translator-text-api/
4MAN and MAN-MoE results are always 3-to-1.
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on Chinese while being much worse on German and Spanish compared to the

BWE baseline. This corroborates our hypothesis that MAN only leverages fea-

tures that are invariant across all languages for CLTL, and it learns such features

better than weight sharing. Therefore, when transferring to German or Spanish,

which is similar to a subset of source languages, the performance of MAN de-

grades significantly. On the other hand, when Chinese serves as the target lan-

guage, where all source languages are rather distant from it, MAN has its merit

in extracting language-invariant features that could generalize to Chinese. With

MAN-MoE, however, this trade-off between close and distant language pairs is

well addressed by the combination of MAN and MoE. By utilizing both language-

invariant and language-specific features for transfer, MAN-MoE outperforms all

cross-lingually unsupervised baselines on all languages.

Furthermore, even when compared with the MT baseline, which has access

to hundreds of millions of parallel sentences, MAN-MoE performs competitively

on German and Spanish. It even significantly beats both MT systems on Ger-

man as MT sometimes fails to provide accurate word alignment for German.

On Chinese, where the unsupervised BWEs are much less accurate (BWE base-

lines only achieve 20% F1), MAN-MoE is able to greatly improve over the BWE

and MAN baselines and shows promising results for zero-resource CLTL even

between distant language pairs.

Feature Ablation

In this section, we take a closer look at the various modules of MAN-MoE and

their impacts on performance (Table 5.3). When the MoE in C is removed, mod-

erate decrease is observed on all languages. The performance degrades the most
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on Chinese, suggesting that using a single MLP in C is not ideal when the target

language is not similar to the sources. When removing the private MoE, the MoE

in C no longer makes much sense as C only has access to the shared features,

and the performance is even slightly worse than removing both MoEs. With

both MoE modules removed, it reduces to the MAN model, and we see a signifi-

cant drop on German and Spanish. Finally, when removing MAN while keeping

MoE, where the shared features are simply learned via weight-sharing, we see

a slight drop on German and Spanish, but a rather great one on Chinese. The

ablation results support our hypotheses and validate the merit of MAN-MoE.

5.3.2 Cross-Lingual Named Entity Recognition

In this section, we present experiments on the CoNLL 2002/2003 multilingual

named entity recognition (NER) dataset (Sang, 2002; Sang and Meulder, 2003),

with four languages: English, German, Spanish and Dutch. The task is also

formulated as a sequence tagging problem, with four types of tags: PER, LOC,

ORG, and MISC.

The results are summarized in Table 5.4. We observe that using only word

embeddings does not yield satisfactory results, since the out-of-vocabulary

problem is rather severe, and morphological features such as capitalization is

crucial for NER. We hence add character-level word embeddings for this task

(Section 5.2.1) to capture subword features and alleviate the OOV problem.

For German, however, all nouns are capitalized, and the capitalization features

learned on the other three languages would lead to poor results. Therefore, for

German only, we lowercase all characters in systems that adopt CharCNN.
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Target Language de es nl avg

Methods with cross-lingual resources
Täckström et al. (2012) 40.4 59.3 58.4 52.7
Nothman et al. (2013) 55.8 61.0 64.0 60.3
Tsai et al. (2016) 48.1 60.6 61.6 56.8
Ni et al. (2017) 58.5 65.1 65.4 63.0
Mayhew et al. (2017) 57.5 66.0 64.5 62.3

Methods without cross-lingual resources
MAN-MoE 55.1 59.5 61.8 58.8
BWE+CharCNN (1-to-1) 51.5 61.0 67.3 60.0
BWE+CharCNN (3-to-1) 55.8 70.4 69.8 65.3
Xie et al. (2018)* 56.9 71.0 71.3 66.4
MAN-MoE+CharCNN 56.7 71.0 70.9 66.2
MAN-MoE+CharCNN+UMWE 56.0 73.5 72.4 67.3

* Contemporaneous work

Table 5.4: F1 scores for the CoNLL NER dataset on German (de), Spanish
(es) and Dutch (nl).

Table 5.4 also shows the performance of several state-of-the-art models in

the literature5. Note that most of these systems are specifically designed for

the NER task, and exploit many task-specific resources, such as multilingual

gazetteers and metadata in Freebase or Wikipedia (such as entity categories).

Among these, Täckström et al. (2012) rely on parallel corpora to learn cross-

lingual word clusters that serve as features. Nothman et al. (2013); Tsai et al.

(2016) both leverage information in external knowledge bases such as Wikipedia

to learn useful features for cross-lingual NER. Ni et al. (2017) employ noisy par-

allel corpora (aligned sentence pairs, but not always translations) and bilingual

dictionaries (5k words for each language pair) for model transfer. They further

add external features such as entity types learned from Wikipedia for improved

performance. Finally, Mayhew et al. (2017) propose a multi-source framework

that utilizes large cross-lingual lexica. Despite using none of these resources,

5We also experimented with the MT baselines, but it often failed to produce word alignment,
resulting in many empty predictions. The MT baselines attain only a F1 score of ∼30%, and were
thus excluded for comparison.
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general or task-specific, MAN-MoE nonetheless outperforms all these methods.

The only exception is German, where task-specific resources remain helpful due

to its unique capitalization rules and high OOV rate.

In a contemporaneous work by (Xie et al., 2018), they propose a cross-lingual

NER model using Bi-LSTM-CRF that achieves similar performance compared to

MAN-MoE+CharCNN. However, our architecture is not specialized to the NER

task, and we did not add task-specific modules such as a CRF decoding layer,

etc.

Last but not least, we replace the MUSE embeddings with our recently pro-

posed unsupervised multilingual word embeddings (Chen and Cardie, 2018b,

Chapter 6), which further boosts the performance, achieving a new state-of-the-

art performance.

5.3.3 Cross-Lingual Text Classification on Amazon Reviews

Finally, we report results on a multilingual text classification dataset (Pretten-

hofer and Stein, 2010). The dataset is a binary classification dataset where each

review is classified into positive or negative sentiment. It has four languages:

English, German, French and Japanese.

As shown in Table 5.5, MT-BOW uses machine translation to translate the

bag of words of a target sentence into the source language, while CL-SCL learns

a cross-lingual feature space via structural correspondence learning (Pretten-

hofer and Stein, 2010). CR-RL (Xiao and Guo, 2013) learns bilingual word rep-

resentations where part of the word vector is shared among languages. Bi-
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PV (Pham et al., 2015) extracts bilingual paragraph vector by sharing the repre-

sentation between parallel documents. UMM (Xu and Wan, 2017) is a multilin-

gual framework that could utilize parallel corpora between multiple language

pairs, and pivot as needed when direct bitexts are not available for a specific

source-target pair. Finally CLDFA (Xu and Yang, 2017) proposes cross-lingual

distillation on parallel corpora for CLTL. Unlike other works listed, however,

they adopt a task-specific parallel corpus (translated Amazon reviews) that are

difficult to obtain in practice, making the numbers not directly comparable to

others.

Among these methods, UMM is the only one that does not require direct

parallel corpus between all source-target pairs. It can instead utilize pivot lan-

guages (e.g. English) to connect multiple languages. MAN-MoE, however, takes

another giant leap forward to completely remove the necessity of parallel cor-

pora while achieving similar results on German and French compared to UMM.

On Japanese, the performance of MAN-MoE is again limited by the quality of

BWEs. (BWE baselines are merely better than randomness.) Nevertheless,

MAN-MoE remains highly effective and the performance is only a few points

below most SoTA methods with cross-lingual supervision.

5.3.4 Visualization of Expert Gate Weights

For a better understanding of the model behavior, we in Figure 5.4 visualize the

average expert gate weights for each of the three target languages in the Ama-

zon dataset. For each sample, we first compute a sentence-level aggregation by

averaging over the expert gate weights of all its tokens. These sentence-level ex-
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Figure 5.4: Average expert gate weights aggregated on a language level
for the Amazon dataset.

pert gate weights are then further averaged across all samples in the validation

set of all three domains (books, dvd, music), which forms a final language-level

average expert gate weight for each target language.

The visualization further collaborates with our hypothesis that our model

makes informed decisions when selecting what features to share to the target

language. It can be seen that when transferring to German or French (from

the remaining three), the Japanese expert is less utilized compared to the Euro-

pean languages. On the other hand, it is interesting that when transferring to

Japanese, the French and English experts are used more than the German one,

and the exact reason remains to be investigated. However, this phenomenon

might be of less significance since the private features may not play a very im-

portant role when transferring to Japanese as the model is probably focusing

more on the shared features, according to the ablation study in Section 5.3.1.
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5.3.5 Implementation Details

In all experiments, Adam (Kingma and Ba, 2015) is used for both optimizers

(main optimizer and D optimizer), with learning rate 0.001 and weight decay

10−8. Batch size is 64 for the slot filling experiment and 16 for the NER and

Amazon Reviews experiments, which is selected mainly due to memory con-

cerns. CharCNN increases the GPU memory usage and NER hence could only

use a batch size of 16 to fit in 12GB of GPU memory. The Amazon experiment

does not employ character embeddings but the documents are much longer,

and thus also using a smaller batch size. All embeddings are fixed during train-

ing. Dropout (Srivastava et al., 2014a) with p = 0.5 is applied in all components.

Unless otherwise mentioned, ReLU is used as non-linear activation.

Bidirectional-LSTM is used in the feature extractors for all experiments. In

particular, Fs is a two-layer BiLSTM of hidden size 128 (64 for each direction),

and Fp is a two-layer BiLSTM of hidden size 128 stacked with a MoE module

(see Figure 5.2). Each expert network in the MoE module of Fp is a two-layer

MLP again of hidden size of 128. The final layer in the MLP has a tanh activa-

tion instead of ReLU to match the LSTM-extracted shared features (with tanh

activations). The expert gate is a linear transformation (matrix) of size 128 × N,

where N is the number of source languages.

On the other hand, the architecture of the task specific predictor C depends

on the task. For sequence tagging experiments, the structure of C is shown

in Figure 5.3, where each expert in the MoE module is a token-level two-layer

MLP with a softmax layer on top for making token label predictions. For text

classification tasks, a dot-product attention mechanism (Luong et al., 2015) is

added after the shared and private features are concatenated. It has a length 256
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λ1 λ2 k

Slot Filling 0.01 1 5
CoNLL NER 0.0001 0.01 1
Amazon 0.002 0.1 1

Table 5.6: The hyperparameter choices for different experiments.

weight vector that attends to the feature vectors of each token and computes a

softmax mixture that pools the token-level feature vectors into a single sentence-

level feature vector. The rest of C remains the same for text classification.

For the language discriminator D, a CNN text classifier (Kim, 2014) is

adopted in all experiments. It takes as input the shared feature vectors of each

token, and employs a CNN with max-pooling to pool them into a single fixed-

length feature vector, which is then fed into a MLP for classifying the language

of the input sequence. The number of kernels is 200 in the CNN, while the

kernel sizes are 3, 4, and 5. The MLP has one hidden layer of size 128.

The MUSE, VecMap, and UMWE embeddings are trained with the mono-

lingual 300d fastText Wikipedia embeddings (Bojanowski et al., 2017). When

character-level word embeddings are used, a CharCNN is added that takes ran-

domly initialized character embeddings of each character in a word, and passes

them through a CNN with kernel number 200 and kernel sizes 3, 4, and 5.

Finally, the character embeddings are max-pooled and fed into a single fully-

connected layer to form a 128 dimensional character-level word embedding,

which is concatenated with the pre-trained cross-lingual word embedding to

form the final word representation of that word.

The remaining hyperparameters such as λ1, λ2 and k (see Algorithm 5.1) are

tuned for each individual experiment, as shown in Table 5.6.
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5.4 Chapter Summary

In this chapter, we propose MAN-MoE, a multilingual model transfer approach

that exploits both language-invariant (shared) features and language-specific

(private) features, which departs from most previous models that can only

make use of shared features. Following chapters 3 and 4, the shared features

are learned via language-adversarial training. On the other hand, the private

features are extracted by a mixture-of-experts (MoE) module, which is able to

dynamically capture the relation between the target language and each source

language on a token level. This is extremely helpful when the target language is

similar to a subset of the source languages, in which case traditional models that

solely rely on shared features would perform poorly. Furthermore, MAN-MoE is

a purely model-based transfer method, which does not require type II super-

vision for training, enabling zero-resource MLTL when combined with unsu-

pervised cross-lingual word embeddings. This makes MAN-MoE more widely

applicable to lower-resourced languages.

Our claim is supported by a wide range of experiments over multiple text

classification and sequence tagging tasks, including a large-scale real-world in-

dustry dataset. MAN-MoE significantly outperforms all cross-lingually unsu-

pervised baselines (trained without type II supervision) regardless of task or

language. Furthermore, even considering methods with strong cross-lingual

supervision, MAN-MoE is able to match or outperform these models on closer

language pairs. When transferring to distant languages such as Chinese or

Japanese, where the quality of cross-lingual word embeddings are unsatisfac-

tory, MAN-MoE remains highly effective and substantially mitigates the perfor-

mance gap introduced by cross-lingual supervision.
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CHAPTER 6

UNSUPERVISED MULTILINGUAL WORD EMBEDDINGS

In chapters 3–5, we investigated the task of low-resource cross-lingual model

transfer, focusing particularly on removing the need for type II supervision.

While we proposed a series of successful models for both the bilingual and

multilingual transfer cases, the performance of these methods depended on the

quality of the cross-lingual word embeddings as shown in the previous chap-

ters. As reviewed in Chapter 2, cross-lingual word representations (Klementiev

et al., 2012; Mikolov et al., 2013b) create a shared embedding space for words

across two (Bilingual Word Embeddings, BWEs) or more languages (Multilin-

gual Word Embeddings, MWEs). Most earlier approaches for learning these

cross-lingual word embeddings require type II supervision such as bilingual

dictionaries or parallel corpora, which can potentially undermine the benefit

brought by removing type II supervision dependence during model transfer.

Therefore, we in this chapter continue onto looking at the task of learning unsu-

pervised cross-lingual lexical representation without type II supervision1.

There are attempts to reduce the dependence on type II supervision by re-

quiring a very small parallel lexicon such as identical character strings (Smith

et al., 2017), or numerals (Artetxe et al., 2017). Recently, a few papers (Zhang

et al., 2017; Lample et al., 2018) started to look at applying our language-

adversarial training technique to the learning of bilingual word embeddings, and

proposed the first set of methods for inducing completely unsupervised bilin-

gual word embeddings (UBWEs).

1Note that for the task of learning cross-lingual word embeddings, type 0 and I supervision
is not relevant, and the only supervision required is type II supervision. Therefore, it can be
simply referred to as unsupervised cross-lingual word embeddings without ambiguity if no
type II supervision is employed during training.
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In contrast to BWEs that only focus on a pair of languages, MWEs instead

strive to leverage the interdependencies among multiple languages to learn a

multilingual embedding space. MWEs are desirable when dealing with multi-

ple languages simultaneously and have also been shown to improve the perfor-

mance on some bilingual tasks thanks to its ability to acquire knowledge from

other languages (Ammar et al., 2016; Duong et al., 2017). Despite these advan-

tages, not much progress has been made on learning unsupervised multilingual

word embeddings (UMWEs) that requires no type II supervision. The prior art

obtains UMWEs simply through naïve combinations of the existing UBWEs,

using methods such as mapping all the languages independently to the embed-

ding space of a chosen target language2 (usually English) (Lample et al., 2018).

There are downsides, however, when using a single fixed target language with

no interaction between any of the two source languages. For instance, French

and Italian are very similar, and the fact that each of them is individually con-

verted to a less similar language, English for example, in order to produce a

shared embedding space will inevitably degrade the quality of the MWEs.

For certain multilingual tasks such as translating between any pair of N

given languages, another option for obtaining UMWEs exists. One can directly

train UBWEs for each of such language pairs (referred to as BWE-Direct). This

is seldom used in practice, since it requires training O(N2) BWE models as op-

posed to only O(N) in BWE-Pivot, and is too expensive for most use cases. More-

over, this method still does not fully exploit the language interdependence. For

example, when learning embeddings between French and Italian, BWE-Direct

only utilizes information from the pair itself, but other Romance languages such

as Spanish may also provide valuable information that could improve perfor-

2Henceforth, we refer to this method as BWE-Pivot since the target language serves as a pivot
to connect other languages.
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mance.

In this chapter, we propose a novel unsupervised algorithm to train MWEs

using only monolingual corpora (or equivalently, monolingual word embed-

dings). Our method exploits the interdependencies between any two lan-

guages and maps all monolingual embeddings into a shared multilingual em-

bedding space via a two-stage algorithm consisting of (i) Multilingual Adversar-

ial Training (MAT) and (ii) Multilingual Pseudo-Supervised Refinement (MPSR).

As shown by experimental results on multilingual word translation and cross-

lingual word similarity, our model is as efficient as BWE-Pivot yet outperforms

both BWE-Pivot and BWE-Direct despite the latter being much more expen-

sive. In addition, our model achieves a higher overall performance than state-

of-the-art supervised methods in these experiments. Finally, as we have seen in

Section 5.3.2, when applied to downstream tasks such as multilingual named

entity recognition, our UMWEs yield higher performance compared to UBWEs,

which serves as an extrinsic evaluation to further validate the effectiveness of

our model.

This chapter is based on Chen and Cardie (2018b).

6.1 Related Work

There is a plethora of literature on learning cross-lingual word representa-

tions, focusing either on a pair of languages, or multiple languages at the same

time (Klementiev et al., 2012; Zou et al., 2013; Mikolov et al., 2013b; Gouws et al.,

2015; Coulmance et al., 2015; Ammar et al., 2016; Duong et al., 2017, inter alia).

One shortcoming of these methods is the dependence on cross-lingual supervi-
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sion (type II supervision) such as parallel corpora or bilingual lexica. Abundant

research efforts have been made to alleviate such dependence (Vulić and Moens,

2015; Artetxe et al., 2017; Smith et al., 2017), but consider only the case of a single

pair of languages (BWEs). Furthermore, fully unsupervised methods exist for

learning BWEs (Zhang et al., 2017; Lample et al., 2018; Artetxe et al., 2018). For

unsupervised MWEs, however, previous methods merely rely on a number of

independent BWEs to separately map each language into the embedding space

of a chosen target language (Smith et al., 2017; Lample et al., 2018).

Mikolov et al. (2013b) first propose to learn cross-lingual word representa-

tions by learning a linear mapping between the monolingual embedding spaces

of a pair of languages. It has then been observed that enforcing the linear

mapping to be orthogonal could significantly improve performance (Xing et al.,

2015; Artetxe et al., 2016; Smith et al., 2017). These methods solve a linear equa-

tion called the orthogonal Procrustes problem for the optimal orthogonal lin-

ear mapping between two languages, given a set of word pairs as supervision.

Artetxe et al. (2017) find that when using weak supervision (e.g. digits in both

languages), applying this Procrustes process iteratively achieves higher perfor-

mance. Lample et al. (2018) adopt the iterative Procrustes method with pseudo-

supervision in a fully unsupervised setting and also obtain good results. In the

MWE task, however, the multilingual mappings no longer have a closed-form

solution, and we hence propose the MPSR algorithm (Section 6.2.2) for learning

multilingual embeddings using gradient-based optimization methods.
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6.2 Model

In this chapter, our goal is to learn a single multilingual embedding space for

N languages, without relying on any type II supervision. We assume that we

have access to monolingual embeddings for each of the N languages, which can

be obtained using unlabeled monolingual corpora (Mikolov et al., 2013c; Bo-

janowski et al., 2017). We now present our unsupervised MWE (UMWE) model

that jointly maps the monolingual embeddings of all N languages into a sin-

gle space by explicitly leveraging the interdependencies between arbitrary lan-

guage pairs, but is computationally as efficient as learning O(N) BWEs (instead

of O(N2)).

Denote the set of languages as L with |L| = N. Suppose for each language

l ∈ L with vocabulary Vl, we have a set of d-dimensional monolingual word

embeddings El of size |Vl| × d. Let Sl denote the monolingual embedding space

for l, namely the distribution of the monolingual embeddings of l. If a set of

embeddings E are in an embedding space S, we write E ` S (e.g. ∀l : El `

Sl). Our models learns a set of encoders Ml, one for each language l, and the

corresponding decoders M−1
l . The encoders map all El to a single target space

T : Ml(El) ` T . On the other hand, a decoder M−1
l maps an embedding in T

back to Sl.

Previous research (Mikolov et al., 2013b) shows that there is a strong lin-

ear correlation between the vector spaces of two languages, and that learning

a complex non-linear neural mapping does not yield better results. Xing et al.

(2015) further show that enforcing the linear mappings to be orthogonal ma-

trices achieves higher performance. Therefore, we let our encoders Ml be or-
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thogonal linear matrices, and the corresponding decoders can be obtained by

simply taking the transpose: M−1
l = M>

l . Thus, applying the encoder or de-

coder to an embedding vector is accomplished by multiplying the vector with

the encoder/decoder matrix.

Another benefit of using linear encoders and decoders (also referred to as

mappings) is that we can learn N − 1 mappings instead of N by choosing the

target space T to be the embedding space of a specific language (denoted as

the target language) without losing any expressiveness of the model. Given a

MWE with an arbitrary T , we can construct an equivalent one with only N − 1

mappings by multiplying the encoders of each language Ml to the decoder of

the chosen target languageM>
t :

M′
t =M>

t Mt = I

M′
lEl = (M>

t Ml)El ` St

where I is the identity matrix. The new MWE is isomorphic to the original one.

We now present the two major components of our approach, Multilingual

Adversarial Training (Section 6.2.1) and Multilingual Pseudo-Supervised Re-

finement (Section 6.2.2).

6.2.1 Multilingual Adversarial Training

In this section, we introduce an adversarial training approach for learning mul-

tilingual embeddings without cross-lingual supervision. Figure 6.1 shows our

Multilingual Adversarial Training (MAT) model and the training procedure is

described in Algorithm 6.1. Note that as explained in Section 6.2, the encoders
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Figure 6.1: Multilingual Adversarial Training (Algorithm 6.1). langi and
lang j are two randomly selected languages at each training
step. JD j and JMi are the objectives of D j andMi, respectively
(Equation 6.1 and 6.2).

and decoders adopted in practice are orthogonal linear mappings while the

shared embedding space is chosen to be the same space as a selected target

language.

In order to learn a multilingual embedding space without supervision, we

employ a series of language discriminators Dl, one for each language l ∈ L. Each

Dl is a binary classifier with a sigmoid layer on top, and is trained to identify

how likely a given vector is from Sl, the embedding space of language l. On the

other hand, to train the mappings, we convert a vector from a random language
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Require: Monolingual word embeddings Ei for each language langi ∈ L. Hyperpa-
rameter k ∈ N.

1: repeat
2: .D iterations
3: for diter = 1 to k do
4: lossd = 0
5: for all lang j ∈ L do
6: Select at random langi ∈ L

7: Sample a batch of word embeddings xi ∼ Ei
8: Sample a batch of word embeddings x j ∼ E j
9: x̂t =Mi(xi) . encode to T

10: x̂ j =M>j (x̂t) . decode to S j
11: y j = D j(x j) . genuine embeddings
12: ŷ j = D j(x̂ j) . converted embeddings
13: lossd += Ld(1, y j) + Ld(0, ŷ j)

14: Update allD parameters to minimize lossd

15: .M iteration
16: loss = 0
17: for all langi ∈ L do
18: Select at random lang j ∈ L

19: Sample a batch of word embeddings xi ∼ Ei
20: x̂t =Mi(xi) . encode to T
21: x̂ j =M>j (x̂t) . decode to S j
22: ŷ j = D j(x̂ j)
23: loss += Ld(1, ŷ j)

24: Update allM parameters to minimize loss
25: orthogonalize(M) . see Section 6.2.3
26: until convergence

Algorithm 6.1: Multilingual Adversarial Training

langi to another random language lang j (via the target space T first). The objec-

tive of the mappings is to confuse D j, the language discriminator for lang j, so

the mappings are updated in a way that D j cannot differentiate the converted

vectors from the real vectors in S j. This multilingual objective enables us to ex-

plicitly exploit the relations between all language pairs during training, leading

to improved performance.
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Formally, for any language lang j, the objective thatD j is minimizing is:

JD j = E
i∼L
E

xi∼Si
x j∼S j

r
Ld

(
1,D j(x j)

)
+ Ld

(
0,D j(M>

jMixi)
)z

(6.1)

where Ld(y, ŷ) is the loss function of D, which is chosen as the cross entropy loss

in practice. y is the language label with y = 1 indicates a real embedding from

that language.

Furthermore, the objective ofMi for langi is:

JMi = E
j∼L
E

xi∼Si
x j∼S j

r
Ld

(
1,D j(M>

jMixi)
)z

(6.2)

whereMi strives to make D j believe that a converted vector to lang j is instead

real. This adversarial relation betweenM andD stimulatesM to learn a shared

multilingual embedding space by making the converted vectors look as authen-

tic as possible so thatD cannot predict whether a vector is a genuine embedding

from a certain language or converted from another language viaM.

In addition, we allow langi and lang j to be the same language in (6.1) and

(6.2). In this case, we are encoding a language to T and back to itself, essentially

forming an adversarial autoencoder (Makhzani et al., 2015), which is reported to

improve the model performance (Zhang et al., 2017). Finally, on Line 5 and 17 in

Algorithm 6.1, a for loop is used instead of random sampling. This is to ensure

that in each step, every discriminator (or mapping) is getting updated at least

once, so that we do not need to increase the number of training iterations when

adding more languages. Computationally, when compared to the BWE-Pivot

and BWE-Direct baselines, one step of MAT training costs similarly to N BWE

training steps, and in practice we train MAT for the same number of iterations as

training the baselines. Therefore, MAT training scales linearly with the number

of languages similar to BWE-Pivot (instead of quadratically as in BWE-Direct).
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6.2.2 Multilingual Pseudo-Supervised Refinement

Using MAT, we are able to obtain UMWEs with reasonable quality, but they do

not yet achieve state-of-the-art performance. Previous research on learning un-

supervised BWEs (Lample et al., 2018) observes that the embeddings obtained

from adversarial training do a good job aligning the frequent words between

two languages, but performance degrades when considering the full vocabu-

lary. They hence propose to use an iterative refinement method (Artetxe et al.,

2017) to repeatedly refine the embeddings obtained from the adversarial train-

ing. The idea is that we can anchor on the more accurately predicted relations

between frequent words to improve the mappings learned by adversarial train-

ing.

When learning MWEs, however, it is desirable to go beyond aligning each

language with the target space individually, and instead utilize the relations

between all languages as we did in MAT. Therefore, we in this section propose a

generalization of the existing refinement methods to incorporate a multilingual

objective.

In particular, MAT can produce an approximately aligned embedding space.

As mentioned earlier, however, the training signals from D for rare words

are noisier and may lead to worse performance. Thus, the idea of Mul-

tilingual Pseudo-Supervised Refinement (MPSR) is to induce a dictionary of

accurately-predicted word pairs for every language pair, used as pseudo super-

vision to improve the embeddings learned by MAT. For a specific language pair

(langi, lang j), the pseudo-supervised lexicon Lex(langi, lang j) is constructed

from mutual nearest neighbors betweenMiEi andM jE j, among the most frequent

15k words of both languages.
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Require: A set of (pseudo-)supervised lexica of word pairs Lex(langi, lang j) between
each pair of languages.

1: repeat
2: loss = 0
3: for all langi ∈ L do
4: Select at random lang j ∈ L

5: Sample (xi, x j) ∼ Lex(langi, lang j)
6: ti =Mi(xi) . encode xi
7: t j =M j(x j) . encode x j
8: loss += Lr(ti, t j) . refinement loss
9: Update allM parameters to minimize loss

10: orthogonalize(M) . see Section 6.2.3
11: until convergence

Algorithm 6.2: Multilingual Pseudo-Supervised Refinement

With the constructed lexica, the MPSR objective is:

Jr = E
(i, j)∼L2

E
(xi,x j)∼Lex(i, j)

JLr(Mixi,M jx j)K (6.3)

where Lr(x, x̂) is the loss function for MPSR, for which we use the mean square

loss. The MPSR training is depicted in Algorithm 6.2.

Cross-Lingual Similarity Scaling (CSLS) When constructing the pseudo-

supervised lexica, a distance metric between embeddings is needed to com-

pute nearest neighbors. Standard distance metrics such as the Euclidean dis-

tance or the cosine similarity, however, can lead to the hubness problem in high-

dimensional spaces when used to calculate nearest neighbors (Radovanović

et al., 2010; Dinu and Baroni, 2015). Namely, some words are very likely to

be the nearest neighbors of many others (hubs), while others are not the nearest

neighbor of any word. This problem is addressed in the literature by designing

alternative distance metrics, such as the inverted softmax (Smith et al., 2017) or

the CSLS (Lample et al., 2018). In this work, we adopt the CSLS similarity as a

drop-in replacement for cosine similarity whenever a distance metric is needed.
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The CSLS similarity (whose negation is a distance metric) is calculated as fol-

lows:

CSLS(x, y) = 2 cos(x, y) −
1
n

∑
y′∈NY (x)

cos(x, y′) −
1
n

∑
x′∈NX(y)

cos(x′, y) (6.4)

where NY(x) is the set of n nearest neighbors of x in the vector space that y comes

from: Y = {y1, ..., y|Y |}, and vice versa for NX(y). In practice, we use n = 10.

6.2.3 Orthogonalization

As mentioned in Section 6.2, orthogonal linear mappings are the preferred

choice when learning transformations between the embedding spaces of dif-

ferent languages (Xing et al., 2015; Smith et al., 2017). Therefore, we perform an

orthogonalization update (Cisse et al., 2017) after each training step to ensure

that our mappingsM are (approximately) orthogonal:

∀l :Ml = (1 + β)Ml − βMlM
>
l Ml (6.5)

where β is set to 0.001.

6.2.4 Unsupervised Multilingual Validation

In order to do model selection in the unsupervised setting, where no validation

set can be used, a surrogate validation criterion is required that does not depend

on bilingual data. Previous work shows promising results using such surrogate

criteria for model validation in the bilingual case (Lample et al., 2018), and we
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in this work adopt a variant adapted to our multilingual setting:

V(M,E) = E
(i, j)∼Pi j

q
mean_csls(M>

jMiEi,E j)
y

=
∑
i, j

pi j · mean_csls(M>
jMiEi,E j)

where pi j forms a probability simplex. In this work, we let all pi j = 1
N(N−1) so that

V(M,E) reduces to the macro average over all language pairs. Using different

pi j values can place varying weights on different language pairs, which might

be desirable in certain scenarios.

The mean_csls function is an unsupervised bilingual validation criterion

proposed by Lample et al. (2018), which is the mean CSLS similarities between

the most frequent 10k words and their translations (nearest neighbors).

6.3 Experiments

In this section, we present experimental results to demonstrate the effectiveness

of our unsupervised MWE method on two benchmark tasks, the multilingual

word translation task, and the SemEval-2017 cross-lingual word similarity task.

We compare our MAT+MPSR method with state-of-the-art unsupervised and su-

pervised approaches, and show that ours outperforms previous methods, su-

pervised or not, on both tasks.

Pre-trained 300d fastText (monolingual) embeddings (Bojanowski et al.,

2017) trained on the Wikipedia corpus are used for all systems that require

monolingual word embeddings for learning cross-lingual embeddings.
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6.3.1 Multilingual Word Translation

In this section, we consider the task of word translation between arbitrary pairs

of a set of N languages. To this end, we use the recently released multilingual

word translation dataset on six languages: English, French, German, Italian,

Portuguese and Spanish (Lample et al., 2018). For any pair of the six languages,

a ground-truth bilingual dictionary is provided with a train-test split of 5000

and 1500 unique source words, respectively. The 5k training pairs are used in

training supervised baseline methods, while all unsupervised methods do not

rely on any cross-lingual resources. All systems are tested on the 1500 test word

pairs for each pair of languages.

For comparison, we adopt a state-of-the-art unsupervised BWE method (Lam-

ple et al., 2018) and generalize it to the multilingual setting using the two

aforementioned approaches, namely BWE-Pivot and BWE-Direct, to produce

baseline unsupervised MWE systems. English is chosen as the pivot language

in BWE-Pivot. We further incorporate the supervised BWE-Direct (Sup-BWE-

Direct) method as a baseline, where each BWE is trained on the 5k gold-standard

word pairs via the orthogonal Procrustes process (Artetxe et al., 2017; Lample

et al., 2018).

Table 6.1 and 6.2 present the evaluation results, wherein the numbers rep-

resent precision@1, namely how many times one of the correct translations of a

source word is retrieved as the top candidate. All systems retrieve word trans-

lations using the CSLS similarity in the learned embedding space. Table 6.1

shows the detailed results for all 30 language pairs, while Table 6.2 summarizes

the results in a number of ways. We first observe the training cost of all systems

summarized in Table 6.2. #BWEs indicates the training cost of a certain method
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measured by how many BWE models it is equivalent to train. BWE-Pivot needs

to train 2(N−1) BWEs since a separate BWE is trained for each direction in a lan-

guage pair for increased performance. BWE-Direct on the other hand, trains an

individual BWE for all (again, directed) pairs, resulting a total of N(N−1) BWEs.

The supervised Sup-BWE-Direct method trains the same number of BWEs as

BWE-Direct but is much faster in practice, for it does not require the unsuper-

vised adversarial training stage. Finally, while our MAT+MPSR method does not

train independent BWEs, as argued in Section 6.2.1, the training cost is roughly

equivalent to training N−1 BWEs, which is corroborated by the real training

time shown in Table 6.2.

We can see in Table 6.1 that our MAT+MPSR method achieves the highest per-

formance on all but 3 language pairs, compared against both the unsupervised

and supervised approaches. When looking at the overall performance across all

language pairs, BWE-Direct achieves a +0.6% performance gain over BWE-Pivot

at the cost of being much slower to train. When supervision is available, Sup-

BWE-Direct further improves another 0.4% over BWE-Direct. Our MAT+MPSR

method, however, attains an impressive 1.3% improvement against Sup-BWE-

Direct, despite the lack of cross-lingual supervision.

To provide a more in-depth examination of the results, we first consider the

Romance language pairs, such as fr-es, fr-it, fr-pt, es-it, it-pt and their reverse

directions. BWE-Pivot performs notably worse than BWE-Direct on these pairs,

which validates our hypothesis that going through a less similar language (En-

glish) when translating between similar languages will result in reduced accu-

racy. Our MAT+MPSR method, however, overcomes this disadvantage of BWE-

Pivot and achieves the best performance on all these pairs through an explicit
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multilingual learning mechanism without increasing the computational cost.

Furthermore, our method also beats the BWE-Direct approach, which sup-

ports our second hypothesis that utilizing knowledge from languages beyond

the pair itself could improve performance. For instance, there are a few pairs

where BWE-Pivot outperforms BWE-Direct, such as de-it, it-de and pt-de, even

though it goes through a third language (English) in BWE-Pivot. This might

suggest that for some less similar language pairs, leveraging a third language as

a bridge could in some cases work better than only relying on the language pair

itself. German is involved in all these language pairs where BWE-Pivot outper-

forms than BWE-Direct, which is potentially due to the similarity between Ger-

man and the pivot language English. We speculate that if choosing a different

pivot language, there might be other pairs that could benefit. This observation

serves as a possible explanation of the superior performance of our multilin-

gual method over BWE-Direct, since our method utilizes knowledge from all

languages during training.

An additional observation is that for all systems, even when the predic-

tions are incorrect, it is often the case that the top predictions are still seman-

tically relevant to the query word. We therefore also present the precision@5

in Table 6.3 and 6.4. It can be seen that all three systems achieve a huge per-

formance improvement of about 10% compared to precision@1, reaching nearly

90% precision. Our MAT+MPSR method still outperforms all baseline methods

and achieves the best performance.

116



en
-d

e
en

-f
r

en
-e

s
en

-i
t

en
-p

t
de

-f
r

de
-e

s
de

-i
t

de
-p

t
fr

-e
s

fr
-i

t
fr

-p
t

es
-i

t
es

-p
t

it
-p

t

Su
pe

rv
is

ed
m

et
ho

ds
w

ith
cr

os
s-

lin
gu

al
su

pe
rv

is
io

n
Su

p-
BW

E-
D

ir
ec

t
88

.7
90

.7
90

.9
88

.5
89

.7
86

.1
81

.8
83

.5
76

.3
92

.7
90

.8
88

.9
92

.5
93

.9
90

.2

U
ns

up
er

vi
se

d
m

et
ho

ds
w

ith
ou

tc
ro

ss
-li

ng
ua

ls
up

er
vi

si
on

BW
E-

Pi
vo

t
88

.7
90

.8
91

.3
88

.3
89

.5
85

.1
80

.9
82

.5
74

.8
91

.2
90

.3
88

.2
91

.5
93

.0
89

.1
BW

E-
D

ir
ec

t
88

.7
90

.8
91

.3
88

.3
89

.5
85

.5
79

.3
80

.1
72

.8
92

.7
91

.2
87

.8
92

.6
94

.2
88

.8

M
A
T

+M
P
S
R

88
.7

91
.1

91
.4

89
.3

90
.3

87
.3

82
.3

85
.4

77
.7

93
.1

90
.7

90
.0

92
.7

94
.1

91
.0

de
-e

n
fr

-e
n

es
-e

n
it

-e
n

pt
-e

n
fr

-d
e

es
-d

e
it

-d
e

pt
-d

e
es

-f
r

it
-f

r
pt

-f
r

it
-e

s
pt

-e
s

pt
-i

t

Su
pe

rv
is

ed
m

et
ho

ds
w

ith
cr

os
s-

lin
gu

al
su

pe
rv

is
io

n
Su

p-
BW

E-
D

ir
ec

t
84

.8
90

.8
92

.0
87

.8
89

.6
85

.1
82

.9
83

.0
80

.5
93

.5
94

.0
91

.3
93

.7
96

.1
89

.3

U
ns

up
er

vi
se

d
m

et
ho

ds
w

ith
ou

tc
ro

ss
-li

ng
ua

ls
up

er
vi

si
on

BW
E-

Pi
vo

t
85

.5
91

.3
92

.2
87

.8
89

.9
84

.6
83

.6
83

.3
79

.1
93

.5
93

.0
91

.3
92

.7
95

.4
89

.3
BW

E-
D

ir
ec

t
85

.5
91

.3
92

.2
87

.8
89

.9
85

.7
83

.7
78

.1
78

.2
94

.1
94

.3
89

.9
93

.6
96

.3
87

.8

M
A
T

+M
P
S
R

85
.3

90
.7

91
.7

88
.0

89
.2

85
.6

84
.7

83
.5

81
.2

94
.3

94
.1

92
.9

93
.9

96
.2

89
.6

Ta
bl

e
6.

3:
Pr

ec
is

io
n@

5
fo

r
M

ul
ti

lin
gu

al
W

or
d

Tr
an

sl
at

io
n:

D
et

ai
le

d
R

es
ul

ts

Tr
ai

ni
ng

C
os

t
Si

ng
le

So
ur

ce
Si

ng
le

Ta
rg

et

#B
W

Es
ti

m
e

en
-x

x
de

-x
x

fr
-x

x
es

-x
x

it
-x

x
pt

-x
x

xx
-e

n
xx

-d
e

xx
-f

r
xx

-e
s

xx
-i

t
xx

-p
t

O
ve

ra
ll

Su
pe

rv
is

ed
m

et
ho

ds
w

ith
cr

os
s-

lin
gu

al
su

pe
rv

is
io

n
Su

p-
BW

E-
D

ir
ec

t
N

(N
−

1)
4h

89
.7

82
.5

89
.7

91
.0

89
.7

89
.4

89
.0

84
.0

91
.1

91
.0

88
.9

87
.8

88
.7

U
ns

up
er

vi
se

d
m

et
ho

ds
w

ith
ou

tc
ro

ss
-li

ng
ua

ls
up

er
vi

si
on

BW
E-

Pi
vo

t
2(

N
−

1)
8h

89
.7

81
.8

89
.1

90
.8

89
.2

89
.0

89
.3

83
.9

90
.7

90
.3

88
.4

86
.9

88
.3

BW
E-

D
ir

ec
t

N
(N
−

1)
23

h
89

.7
80

.6
89

.7
91

.4
88

.5
88

.4
89

.3
82

.9
90

.9
90

.6
88

.0
86

.6
88

.1

M
A
T

+M
P
S
R

N
−

1
5h

90
.2

83
.6

90
.0

91
.5

90
.1

89
.8

89
.0

84
.7

91
.9

91
.4

89
.5

88
.6

89
.2

Ta
bl

e
6.

4:
Pr

ec
is

io
n@

5
fo

r
M

ul
ti

lin
gu

al
W

or
d

Tr
an

sl
at

io
n:

Su
m

m
ar

iz
ed

R
es

ul
ts

117



fr
-e

s
ex

am
pl

es

So
ur

ce
W

or
d

lit
té

ra
ir

e
m

at
tr

e
G

ol
d

Tr
an

sl
at

io
n(

s)
li

te
ra

ri
o

po
ne

r

M
od

el
Pr

ed
ic

tio
ns

BW
E-

Pi
vo

t
BW

E-
D

ir
ec

t
M
A
T

+M
P
S
R

BW
E-

Pi
vo

t
BW

E-
D

ir
ec

t
M
A
T

+M
P
S
R

lit
er

ar
ia

li
te

ra
ri

o
li

te
ra

ri
o

po
ni

en
do

po
ne

r
po

ne
r

it
er

ar
io

lit
er

ar
ia

lit
er

ar
ia

po
ne

r
po

ne
rl

o
po

ne
rl

o
lit

er
ar

ia
»

lit
er

ar
ia

»
lit

er
ar

ia
»

po
ne

rl
e

po
ne

rl
e

po
ne

rl
e

lit
er

ar
ia

m
en

te
lit

er
ar

ia
m

en
te

lit
er

ar
ia

m
en

te
co

lo
ca

nd
o

po
ne

rl
es

po
ne

rs
e

lit
er

ar
io

s
no

ve
lís

ti
co

lit
er

at
ur

a
po

ni
én

do
lo

po
ne

rs
e

po
ne

rl
a

So
ur

ce
W

or
d

vé
ri

fie
r

pl
ei

n
G

ol
d

Tr
an

sl
at

io
n(

s)
ve

ri
fic

ar
ll

en
o

co
m

pr
ob

ar

M
od

el
Pr

ed
ic

tio
ns

BW
E-

Pi
vo

t
BW

E-
D

ir
ec

t
M
A
T

+M
P
S
R

BW
E-

Pi
vo

t
BW

E-
D

ir
ec

t
M
A
T

+M
P
S
R

ve
ri

fic
an

do
co

m
pr

ob
ar

ve
ri

fic
ar

ab
ie

rt
o

lo
nj

a
ll

en
o

co
m

pr
ob

an
do

ve
ri

fic
ar

co
m

pr
ob

ar
ra

to
s

ab
ie

rt
o

ra
to

s
co

m
pr

ob
ar

ve
ri

fic
ar

lo
ve

ri
fic

ar
lo

so
br

es
al

ir
re

pl
et

o
di

áf
an

o
ve

ri
fic

ar
co

m
pr

ob
ar

lo
co

m
pr

ob
ar

lo
qu

ie
br

o
qu

ie
br

o
ab

ie
rt

o
co

m
pr

ob
ar

lo
ve

ri
fic

ar
se

ve
ri

fic
ar

se
sa

lí
an

da
do

r
qu

ie
br

o

de
-it

ex
am

pl
es

So
ur

ce
W

or
d

de
ut

sc
hl

an
d

ge
w

ic
ht

G
ol

d
Tr

an
sl

at
io

n(
s)

ge
rm

an
ia

pe
so

M
od

el
Pr

ed
ic

tio
ns

BW
E-

Pi
vo

t
BW

E-
D

ir
ec

t
M
A
T

+M
P
S
R

BW
E-

Pi
vo

t
BW

E-
D

ir
ec

t
M
A
T

+M
P
S
R

ge
rm

an
ia

it
al

ia
ge

rm
an

ia
ch

ilo
gr

am
m

i
ch

ilo
gr

am
m

i
pe

so
it

al
ia

ge
rm

an
ia

it
al

ia
pe

sa
re

pe
sa

re
pe

sa
re

eu
ro

pa
it

al
ia

,
sv

iz
ze

ra
pe

sa
nd

o
ki

lo
gr

am
m

i
ch

ilo
gr

am
m

i
au

st
ri

a
eu

ro
pa

eu
ro

pa
ch

ilo
gr

am
m

o
pe

sa
no

pe
sa

nd
o

pa
es

i
sv

iz
ze

ra
it

al
ia

,
pe

sa
no

ch
ilo

gr
am

m
o

ch
ilo

gr
am

m
o

So
ur

ce
W

or
d

sc
hl

ie
ßl

ic
h

bä
r

G
ol

d
Tr

an
sl

at
io

n(
s)

in
fin

e
or

so
M

od
el

Pr
ed

ic
tio

ns
BW

E-
Pi

vo
t

BW
E-

D
ir

ec
t

M
A
T

+M
P
S
R

BW
E-

Pi
vo

t
BW

E-
D

ir
ec

t
M
A
T

+M
P
S
R

po
i

po
i

in
fin

e
or

so
le

on
ci

no
or

so
su

cc
es

si
va

m
en

te
in

fin
e

po
i

or
sa

cc
hi

ot
ti

or
so

le
on

ci
no

in
fin

e
su

cc
es

si
va

m
en

te
do

po
di

ch
é

or
sa

cc
hi

ot
to

ci
gn

o
lu

po
do

po
di

ch
é

do
po

di
ch

é
su

cc
es

si
va

m
en

te
le

on
ci

no
le

on
e

le
on

e
nu

ov
am

en
te

da
pp

ri
m

a
da

pp
ri

m
a

ba
m

bi
un

ic
or

no
aq

ui
la

Ta
bl

e
6.

5:
M

ul
ti

lin
gu

al
W

or
d

Tr
an

sl
at

io
n

Ex
am

pl
es

.
To

p
5

pr
ed

ic
ti

on
s

ar
e

sh
ow

n
fo

r
ea

ch
m

od
el

.C
or

re
ct

pr
ed

ic
ti

on
s

ar
e

hi
gh

lig
ht

ed
.

118



Example System Predictions

Table 6.5 shows some examples for the multilingual word translation task. We

pick two language pairs, French-Spanish and German-Italian, where in the

former BWE-Direct achieves higher performance than BWE-Pivot while BWE-

Pivot outperforms BWE-Direct in the latter. The top 5 predictions are shown for

each model. Note that the MWT dataset we use can handle the case of multi-

ple correct translations, and we show all the gold-standard translations for each

source word in the table. For French-Spanish, we can see BWE-Pivot sometimes

predicts the incorrect inflected form of the correct translation, such as wrong

gender, etc. This could potentially be caused by having to go through English

as a pivot, which has less inflection than the two Romance languages.

6.3.2 Cross-Lingual Word Similarity

In this section, we evaluate the quality of our MWEs on the cross-lingual word

similarity (CLWS) task, which assesses how well the similarity in the cross-

lingual embedding space corresponds to a human-annotated semantic simi-

larity score. The high-quality CLWS dataset from SemEval-2017 (Camacho-

Collados et al., 2017) is used for evaluation. The dataset contains word pairs

from any two of the five languages: English, German, Spanish, Italian, and Farsi

(Persian), annotated with semantic similarity scores.

In addition to the BWE-Pivot and BWE-Direct baseline methods, we also

include the two best-performing systems on SemEval-2017, Luminoso (Speer

and Lowry-Duda, 2017) and NASARI (Camacho-Collados et al., 2016) for com-

parison. Note that these two methods are supervised, and have access to the
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Europarl3 (for all languages but Farsi) and the OpenSubtitles20164 parallel cor-

pora.

Table 6.6 shows the results, where the performance of each model is mea-

sured by the Spearman correlation. When compared to the BWE-Pivot and the

BWE-Direct baselines, MAT+MPSR continues to perform the best on all language

pairs. The qualitative findings stay the same as in the word translation task,

except the margin is less significant. This might be because the CLWS task is

much more lenient compared to the word translation task, where in the latter

one needs to correctly identify the translation of a word out of hundreds of

thousands of words in the vocabulary. In CLWS though, one can still achieve

relatively high correlation in spite of minor inaccuracies.

On the other hand, an encouraging result is that when compared to the state-

of-the-art supervised results, our MAT+MPSR method outperforms NASARI by

a very large margin, and achieves top-notch overall performance similar to the

competition winner, Luminoso, without using any bitexts. A closer examina-

tion reveals that our unsupervised method lags a few points behind Luminoso

on the European languages wherein the supervised methods have access to the

large-scale high-quality Europarl parallel corpora. It is the low-resource lan-

guage, Farsi, that makes our unsupervised method stand out. All of the un-

supervised methods outperform the supervised systems from SemEval-2017 on

language pairs involving Farsi, which is not covered by the Europarl bitexts.

This suggests the advantage of learning unsupervised embeddings for lower-

resourced languages, where the supervision might be noisy or absent. Further-

more, within the unsupervised methods, MAT+MPSR again performs the best,

3http://opus.nlpl.eu/Europarl.php
4http://opus.nlpl.eu/OpenSubtitles2016.php
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and attains a higher margin over the baseline approaches on the low-resource

language pairs, vindicating our claim of better multilingual performance.

6.3.3 Implementation Details

As the 300d fastText monolingual embeddings are employed, the dimension of

our encoders M is 300 × 300. Since the vocabulary of the full fastText embed-

dings are very large, we only select 200k most frequent words for each language,

following prior work on learning BWEs (Lample et al., 2018). The discriminator

for each language is a fully connected neural network with two hidden layers

of size 2048 and Leaky-ReLU activation (Maas et al., 2013). Dropout (Srivas-

tava et al., 2014b) with p = 0.1 is used on the input to the discriminators. We

also use (two-sided) label smoothing (Salimans et al., 2016) with s = 0.1 for the

discriminators. We use a batch size of 32.

In the MAT training, two identical Stochastic Gradient Descent (SGD) opti-

mizers are used for training M and D, with a learning rate of 0.1 and a decay

of 0.98. The learning rate is halved at every epoch in which the unsupervised

multilingual validation score does not increase. We use k = 5 in the MAT Algo-

rithm. Similar to Lample et al. (2018), we only feed the discriminators with the

75k most frequent words in each language. A total of 5 MAT epochs are trained,

where each epoch consists of one million samples (i.e. ∼31k steps). On the other

hand, MPSR is trained with Adam (Kingma and Ba, 2015) at a learning rate of

0.001. MPSR is also trained for 5 epochs, and each epoch has 30k steps. The Faiss

library (Johnson et al., 2017) is used to accelerate the nearest neighbor computa-

tion. Our model is implemented using PyTorch (Paszke et al., 2017)5.
5The source code is available at https://github.com/ccsasuke/umwe.
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6.4 Chapter Summary

In this chapter, we propose a fully unsupervised model for learning multilin-

gual word embeddings (MWEs). Although methods exist for learning high-

quality unsupervised BWEs (Lample et al., 2018), little work has been done in

the unsupervised multilingual setting. Previous work relies solely on a number

of unsupervised BWE models to generate MWEs (e.g. BWE-Pivot and BWE-

Direct), which does not fully leverage the interdependencies among all the lan-

guages. Therefore, we propose the MAT+MPSR method that explicitly exploits

the relations between all language pairs without increasing the computational

cost. In our experiments on multilingual word translation and cross-lingual

word similarity (SemEval-2017), we show that MAT+MPSR outperforms existing

unsupervised and even supervised models, achieving new state-of-the-art per-

formance.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we proposed a series of models for learning deep hidden

feature representations suited for performing cross-lingual natural language

processing tasks. In particular, our focus is to eliminate the dependence on type

I (task-specific target language annotations) and type II (general-purpose cross-

lingual resources) supervision, so that our cross-lingual NLP models can be ap-

plied to a wider range of low-resource languages without such supervision.

7.1 Summary of Contributions

In Chapter 3, we present language-adversarial training, a pioneering effort on

cross-lingual model transfer that does not require type II supervision during

training. Language-adversarial training is a deep representation learning ap-

proach for learning language-invariant feature representations by striving to de-

lude an adversarially trained language discriminator whose goal is to identify

the language of a given sample. Experiments are conducted for cross-lingual

text classification, and our method outperforms several baseline methods (with

type II supervision) even when our method is not using any type II supervi-

sion at all. Furthermore, when combined with cross-lingual word embeddings

(trained with type II supervision), it outperformed all existing methods includ-

ing strong machine translation baseline as well as the previous state of the art.

In Chapter 4, we generalize language-adversarial training to support multi-

ple languages. Moreover, we go beyond cross-lingual model transfer and pro-

pose the multinomial adversarial network (MAN), a general machine learning
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framework that can serve as a tool to minimize the divergence among multi-

ple probability distributions. For instance, when applied to cross-lingual model

transfer, the divergence between the distributions of the feature vectors of the

samples from the source and target languages are minimized. Similarly, the

same technique can be used in domain adaptation, where the divergence be-

tween the feature distributions of various domains are minimized instead. We

provide theoretical justification of MAN, showing it minimizes the (generalized)

f-divergence among multiple distributions, and empirically validate its effec-

tiveness on multiple multi-domain text classification tasks.

Chapter 5 presents an improved method for the multi-source cross-lingual

model transfer (also known as multilingual model transfer) task, compared to

the MANmodel. In particular, MAN is only able to leverage the language-invariant

features for model transfer, which is often too restrictive in the multi-source set-

ting. For instance, when transferring from English, Chinese and Spanish to Ger-

man, MAN will wipe out features that are not shared across all four languages,

and the remaining features may be very sparse. On the other hand, the model is

not able to utilize features that are only shared between German and more sim-

ilar source languages such as English. Therefore, we propose a MAN-MoE model

that can use both language-invariant and language-specific features for multi-

lingual model transfer, which demonstrates impressive empirical performance.

Finally in Chapter 6, we look at the other important sub-problem within

the task of cross-lingual transfer learning, the cross-lingual lexical representa-

tion task. While there have been previous attempts to apply our language-

adversarial training technique to this problem, and obtained unsupervised

cross-lingual word embeddings, these efforts focus only on the bilingual case.
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We in Chapter 6 propose the first method for learning unsupervised multilin-

gual word embeddings, which shows strong performance in the experiments.

These unsupervised cross-lingual word embeddings can also be combined with

the cross-lingual model transfer techniques in chapters 3–5 to achieve zero-

resource cross-lingual NLP that requires neither type I nor type II supervision

(see Chapter 5).

7.2 Future Work

To conclude this dissertation, we in this section outline several potential future

work directions.

Model transfer between distant language pairs. This dissertation demon-

strates that strong performance can be achieved for cross-lingual transfer learn-

ing even without type II supervision. On the other hand, as shown in Chap-

ter 5, while zero-resource methods can often achieve comparable performance

to the baselines methods with access to type II supervision (e.g. machine trans-

lation) between closer languages such as English - French, English - German,

etc., the performance gap remains present between type-II-supervised and -

unsupervised methods on more distant language pairs such as English - Chi-

nese and English - Japanese. Moreover, Chapter 5 shows that the mixture of

experts model is more effective when transferring to closer languages, while

language-adversarial training plays an more important role when transferring

to more distant languages. The closeness of languages, however, is not a binary

attribute, which may suggest that it can be beneficial to perform cross-lingual
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transfer in a more systematic way by leveraging language similarity. For in-

stance, a hierarchical cross-lingual transfer can be performed based on language

typology, which may be able to improve the performance on more distant lan-

guages.

Cross-lingual contextualized lexical representation In Chapter 6, we saw

that the state of the art for inducing cross-lingual lexical representation still re-

lies on learning a static linear transformation to connect the word embeddings

spaces of two languages, which can be improved in several aspects. For in-

stance, there are recent papers that attempt to go beyond linear transformations

and seek to model the complex relation between the semantic spaces of two lan-

guages using more sophisticated mappings (Nakashole and Flauger, 2018). One

can also substitute the static mapping that connects the two languages by repre-

senting a target language word as a dynamic combination of all source language

words where the weights are calculated using an attention-style mechanism.

This has been experimented in machine translation (Gu et al., 2018).

Finally, we can also take one step further to replace the word embeddings

with contextualized lexical representation, which has demonstrated impressive

performance gains over traditional word embeddings on a variety of mono-

lingual NLP tasks (Peters et al., 2018; Devlin et al., 2018). Many techniques de-

scribed in this dissertation can be applied to induce cross-lingual contextualized

word embeddings, while not requiring any additional type II supervision.

Transfer learning for NLP beyond the cross-lingual case Another future

work direction is to study transfer learning in a broader sense. Transfer learning

is a powerful machine learning framework for learning with fewer human an-
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notations, by leveraging related labeled data such as that in a different domain,

language, or even for a different task. Most of this dissertation focuses on the

cross-lingual transfer case, where the labeled data comes from a different lan-

guage. Many techniques proposed in this dissertation, though, can be readily

applied to other transfer learning scenarios as well. For example, we studied the

domain adaptation problem in Chapter 4, where the labeled data comes from a

different domain. As machine learning is being applied to more and more NLP

tasks, the scarcity of labeled data is becoming an increasingly important prob-

lem. It is hence worth exploring more general transfer learning approaches to

alleviate this problem and to enable learning modern deep neural models for

more and more NLP problems.
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