

Cornell University

Highlights

	Supervised	Unsupervised				
Bilingual	Mikolov et al. (2013) Zou et al. (2013) & many more	Zhang et al. (2017) Conneau et al. (2017) Artetxe et al. (2017; 2018)				
Multilingual	Ammar et al. (2016) Duong et al. (2017)	This work!				

TL;DR: A multilingual generalization of the Facebook MUSE (Conneau et al., 2017) embeddings. Try our method out if you are using MUSE to map multiple languages into a single space!

Method

Learning Unsupervised Multilingual Embeddings

- N languages, each with trained monolingual embeddings as input
- Learn N-1 orthogonal matrices to map all languages into the same space
- Explicitly model the interaction between all pairs of languages
- Despite exploiting O(N²) language pairs, our method scales linearly with N
- Step 1: Multilingual Adversarial Training (MAT)
- Step 2: Multilingual Pseudo-Supervised Refinement (MPSR)

Multilingual Adversarial Training

Algorithm 1 Multilingual Adversarial Training	Algorithm 2 Multilingual Pseudo-Supervised Re-					
Require: Vocabulary \mathcal{V}_i for each language lang $i \in \mathcal{L}$. Hy-	finement					
perparameter $k \in \mathbb{N}$.	Require: A set of (pseudo-)supervised lexica of word pairs between each pair of languages $Lex(lang_i, lang_j)$.					
1: repeat						
2: $\triangleright \mathcal{D}$ iterations	1: repeat 2: $1 = 1 = 1 = 0$					
3: for diter = 1 to $k \operatorname{do}$	2. $1055 = 0$ 3. for all lang $\in \mathscr{S}$ do					
4: $loss_d = 0$	4: Select at random lang $\in \mathscr{L}$					
5: for all lang $_i \in \mathscr{L}$ do	5: Sample $(x_i, x_j) \sim \text{Lex}(\text{lang}, \text{lang})$					
6: Select at random $lang_i \in \mathscr{L}$	6: $t_i = \mathcal{M}_i(x_i)$ \triangleright encode x_i					
7: Sample a batch of words $x_i \sim \mathcal{V}_i$	7: $t_i = \mathcal{M}_i(x_i)$ \triangleright encode x_i					
8: Sample a batch of words $x_j \sim \mathcal{V}_j$	8: $loss + = L_r(t_i, t_j)$ \triangleright refinement loss					
9: $\hat{x}_t = \mathcal{M}_i(x_i)$ \triangleright encode to \mathcal{T}	9: Update all \mathcal{M} parameters to minimize loss					
10: $\hat{x}_j = \mathcal{M}_j^{\top}(\hat{x}_t)$ \triangleright decode to \mathcal{S}_j	10: orthogonalize(\mathcal{M}) \triangleright see §3.3					
11: $y_j = \mathcal{D}_j(x_j)$ > real vectors	11: until convergence					
12: $\hat{y}_j = \mathcal{D}_j(\hat{x}_j)$ > converted vectors						
13: $loss_d += L_d(1, y_j) + L_d(0, \hat{y}_j)$						
14: Update all \mathcal{D} parameters to minimize $loss_d$	• MAT does a good job for more					
15: $\triangleright \mathcal{M}$ iteration	frequent worde but mey produce					
16: $loss = 0$	frequent words but may produce					
17: for all $lang_i \in \mathscr{L}$ do	noisier signals for rare words.					
18: Select at random $lang_i \in \mathscr{L}$						
19: Sample a batch of words $x_i \sim \mathcal{V}_i$	• MPSR anchors on the more accurately					
20: $\hat{x}_t = \mathcal{M}_i(x_i)$ \triangleright encode to \mathcal{T}	predicted relations between frequent					
21: $\hat{x}_i = \mathcal{M}_i^{\top}(\hat{x}_t)$ \triangleright decode to \mathcal{S}_i	words to improve performance on full					
22: $\hat{y}_j = \mathcal{D}_j(\hat{x}_j)$	vocabulary					
23: $loss + = L_d(1, \hat{y}_j)$	vocabulary.					
24: Update all \mathcal{M} parameters to minimize loss	 Lex(lang_i, lang_i) is constructed using 					
25: orthogonalize(\mathcal{M}) \triangleright see §3.3	mutual nearest neighbors among 15k					
26: until convergence	most frequent words					

 \mathbf{z} Forward and backward passes when training \mathcal{M} \mathbf{z} Forward and backward passes when training \mathcal{D}

Unsupervised Multilingual Word Embeddings

Xilun Chen and Claire Cardie

	Training		
	#BWEs	time	overall
Supervised methods			
Sup-MUSE-Direct	30	4h	78.0
Unsupervised metho	ods		
MUSE-Pivot	10	8h	77.0
MUSE-Direct	30	23h	77.6
Ours	5	$\mathbf{5h}$	79.3

Word Translation Accuracy on 6 languages (30 pairs)

Multilingual Pseudo-Supervised Refinement

{xlchen, cardie}@cs.cornell.edu

Cross-Lingual Word Embeddings

Monolingual

BWE-Pive

MAT+MP:

BWE-Direct

N(N-1) 23h

Bilingual

Experiments

	en-de	en-fr	en-es	en-it	en-pt	de-fr	de-es	de-it	de-pt	fr-es	fr-it	fr-pt	es-i	t es-p	ot it-pt
Supervised metho	ds with	cross-li	noual si	inervis	rion				-			-		-	-
Sup-BWE-Direct	73.5	81.1	81.4	77.3	79.9	73.3	67.7	69.5	59.1	82.6	83.2	78.1	83.5	5 87.3	3 81.0
Unsupervised met	thods wi	thout c	ross-ling	pual su	pervisi	on									
BWE-Pivot	74.0	82.3	81.7	77.0	80.7	71.9	66.1	68.0	57.4	81.1	79.7	74.7	81.9	9 85.0) 78.9
BWE-Direct	74.0	82.3	81.7	77.0	80.7	73.0	65.7	66.5	58.5	83.1	83.0	77.9	83.3	3 87.3	80.5
MAT+MPSR	74.8	82.4	82.5	78.8	81.5	76.7	69.6	72.0	63.2	83.9	83.5	79.3	84.5	5 87.8	8 82.3
	de-en	fr-en	es-en	it-en	pt-en	fr-de	es-de	it-de	pt-de	es-fr	it-fr	pt-fr	it-es	s pt-e	s pt-it
Supervised metho	ds with	cross-li	ngual si	ıpervis	rion										
Sup-BWE-Direct	72.4	82.4	82.9	76.9	80.3	69.5	68.3	67.5	63.7	85.8	87.1	84.3	87.3	3 91.5	5 81.1
Unsupervised met	thods wi	thout c	ross-ling	gual su	pervisi	on									
BWE-Pivot	72.2	82.1	83.3	77.7	80.1	68.1	67.9	66.1	63.1	84.7	86.5	82.6	85.8	8 91.3	3 79.2
BWE-Direct	72.2	82.1	83.3	77.7	80.1	69.7	68.8	62.5	60.5	86	87.6	83.9	87.7	7 92.	80.6
MAT+MPSR	72.9	81.8	83.7	77.4	79.9	71.2	69.0	69.5	65.7	86.9	88.1	86.3	88.2	2 92.7	7 82.6
					(a)	Detaile	ed Resu	ults							
	Traini	ng Cost	L	Single Source						(L	Single	Target			
	#BWE	s time	e en-xx	de-x	x fr-xx	es-xx	it-xx	pt-xx	xx-en	xx-de	xx-fr	xx-es	xx-it	xx-pt	Overall
Supervised metho	ds with	cross-li	ngual si	ıpervis	ion										
Sup-BWE-Direct	N(N-)	1) 4h	78.6	68.4	- 79.2	81.6	80.0	80.2	79.0	68.5	82.3	82.1	78.9	77.1	78.0
Unsupervised met	thods wi	thout c	ross-ling	gual su	pervisi	on									

(b) Summarized Results

2(N-1) 8h 79.1 67.1 77.1 80.6 79.0 79.3 **79.1** 67.8 81.6 81.2 77.2 75.3 77.0

79.1 67.2 79.2 81.7 79.2 79.4 **79.1** 67.1 82.6 82.1 78.1 77.0 77.6

80.0 70.9 79.9 82.4 81.1 81.4 79.1 70.0 84.1 83.4 80.3 78.8 79.3

Table 1: Multilingual Word Translation Results for English, German, French, Spanish, Italian and Portuguese. The reported numbers are *precision@1* in percentage. All systems use the nearest neighbor under the CSLS distance for predicting the translation of a certain word.

Cross-Lingual Word Similarity

- Dataset from SemEval-2017 Shared Task
- Evaluates how well the similarity in the cross-lingual embedding space corresponds to a human-annotated semantic similarity score
- Luminoso and NASARI have access to EuroParl and **OpenSubtitles2016** parallel corpora

Website: http://www.cs.cornell.edu/~xlchen/ Code: <u>https://github.com/ccsasuke/umwe</u>

Cross-Lingual Supervision

Parallel Corpus

The cat sleeps on the couch. 猫睡在沙发上。

Bilingual Lexicon

cat 猫

Word Translation

6 languages: English, German, French, Spanish, Italian, Portuguese Word translation retrieved as nearest neighbors in embeddings space

Baselines

BWE-Pivot:

- Map each language independently from and to English
- In total 2(N-1) MUSE (Conneau et al., 2017) BWEs
- Use English as a pivot for word translation: e.g. de -> en -> fr

BWE-Direct:

• Learn N(N-1) MUSE BWEs for each language pair

• Sup-BWE-Direct:

- Learn N(N-1) Supervised BWEs for each language pair
- Each pair uses 5k labeled word pairs for training

	en-de	en-es	de-es	en-it	de-it	es-it	en-fa	de-fa	es-fa	it-fa	Average
Supervised methods with cross-lingual supervision											
Luminoso	.769	.772	.735	.787	.747	.767	.595	.587	.634	.606	.700
NASARI	.594	.630	.548	.647	.557	.592	.492	.452	.466	.475	.545
Unsupervised methods without cross-lingual supervision											
BWE-Pivot	.709	.711	.703	.709	.682	.721	.672	.655	.701	.688	.695
BWE-Direct	.709	.711	.703	.709	.675	.726	.672	.662	.714	.695	.698
MAT+MPSR	.711	.712	.708	.709	.684	.730	.680	.674	.720	.709	.704

Table 2: Results for the SemEval-2017 Cross-Lingual Word Similarity task. Spearman's ρ is reported. Luminoso (Speer and Lowry-Duda, 2017) and NASARI (Camacho-Collados et al., 2016) are the two top-performing systems for SemEval-2017 that reported results on all language pairs.